5,511 research outputs found
Using \D-operators to construct orthogonal polynomials satisfying higher order difference or differential equations
We introduce the concept of \D-operators associated to a sequence of
polynomials and an algebra \A of operators acting in the linear
space of polynomials. In this paper, we show that this concept is a powerful
tool to generate families of orthogonal polynomials which are eigenfunctions of
a higher order difference or differential operator. Indeed, given a classical
discrete family of orthogonal polynomials (Charlier, Meixner,
Krawtchouk or Hahn), we form a new sequence of polynomials by
considering a linear combination of two consecutive :
, \beta_n\in \RR. Using the concept of \D-operator,
we determine the structure of the sequence in order that the
polynomials are common eigenfunctions of a higher order difference
operator. In addition, we generate sequences for which the
polynomials are also orthogonal with respect to a measure. The same
approach is applied to the classical families of Laguerre and Jacobi
polynomials.Comment: 43 page
Wronskian type determinants of orthogonal polynomials, Selberg type formulas and constant term identities
Let be a sequence of orthogonal polynomials with respect to the
measure . Let be a linear operator acting in the linear space of
polynomials \PP and satisfying that \dgr(T(p))=\dgr(p)-1, for all
polynomial . We then construct a sequence of polynomials ,
depending on but not on , such that the Wronskian type
determinant is equal to the
determinant , up to
multiplicative constants, where the polynomials , , are
defined by , and are certain
generalized moments of the measure . For we recover a Theorem by
Leclerc which extends the well-known Karlin and Szeg\H o identities for Hankel
determinants whose entries are ultraspherical, Laguerre and Hermite
polynomials. For , the first order difference operator, we get some
very elegant symmetries for Casorati determinants of classical discrete
orthogonal polynomials. We also show that for certain operators , the second
determinant above can be rewritten in terms of Selberg type integrals, and that
for certain operators and certain families of orthogonal polynomials
, one (or both) of these determinants can also be rewritten as the
constant term of certain multivariate Laurent expansions.Comment: 36 page
Towards Generic Monitors for Object-Oriented Real-Time Maude Specifications
Non-Functional Properties (NFPs) are crucial in the design of software. Specification of systems is used in the very first phases of the software development process for the stakeholders to make decisions on which architecture or platform to use. These specifications may be an- alyzed using different formalisms and techniques, simulation being one of them. During a simulation, the relevant data involved in the anal- ysis of the NFPs of interest can be measured using monitors. In this work, we show how monitors can be parametrically specified so that the instrumentation of specifications to be monitored can be automatically performed. We prove that the original specification and the automati- cally obtained specification with monitors are bisimilar by construction. This means that the changes made on the original system by adding monitors do not affect its behavior. This approach allows us to have a library of possible monitors that can be safely added to analyze different properties, possibly on different objects of our systems, at will.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. Spanish MINECO/FEDER project TIN2014-52034-R, NSF Grant CNS 13-19109
The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function
We study the fixed point for a non-linear transformation in the set of
Hausdorff moment sequences, defined by the formula: . We determine the corresponding measure , which has an increasing
and convex density on , and we study some analytic functions related to
it. The Mellin transform of extends to a meromorphic function in the
whole complex plane. It can be characterized in analogy with the Gamma function
as the unique log-convex function on satisfying and the
functional equation .Comment: 29 pages,1 figur
Admissibility condition for exceptional Laguerre polynomials
We prove a necessary and sufficient condition for the integrability of the
weight associated to the exceptional Laguerre polynomials. This condition is
very much related to the fact that the associated second order differential
operator has no singularities in .Comment: 12 page
- …