73 research outputs found

    Creation and detection of a mesoscopic gas in a non-local quantum superposition

    Full text link
    We investigate the scattering of a quantum matter wave soliton on a barrier in a one dimensional geometry and we show that it can lead to mesoscopic Schr\"odinger cat states, where the atomic gas is in a coherent superposition of being in the half-space to the left of the barrier and being in the half-space to the right of the barrier. We propose an interferometric method to reveal the coherent nature of this superposition and we discuss in details the experimental feasibility.Comment: 4 pages, 1 figur

    Attaining subclassical metrology in lossy systems with entangled coherent states

    Get PDF
    Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust subclassical measurements [J. Joo et al., Phys. Rev. Lett. 107, 083601 (2011)]. Up to now no read-out scheme has been devised that exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss.We show substantial improvements over unentangled classical states and highly entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future

    Entanglement enhanced atomic gyroscope

    Full text link
    The advent of increasingly precise gyroscopes has played a key role in the technological development of navigation systems. Ring-laser and fibre-optic gyroscopes, for example, are widely used in modern inertial guidance systems and rely on the interference of unentangled photons to measure mechanical rotation. The sensitivity of these devices scales with the number of particles used as 1/N1/ \sqrt{N}. Here we demonstrate how, by using sources of entangled particles, it is possible to do better and even achieve the ultimate limit allowed by quantum mechanics where the precision scales as 1/N. We propose a gyroscope scheme that uses ultra-cold atoms trapped in an optical ring potential.Comment: 19 pages, 2 figure

    Creation of macroscopic superposition states from arrays of Bose-Einstein condensates

    Get PDF
    We consider how macroscopic quantum superpositions may be created from arrays of Bose-Einstein condensates. We study a system of three condensates in Fock states, all with the same number of atoms and show that this has the form of a highly entangled superposition of different quasi-momenta. We then show how, by partially releasing these condensates and detecting an interference pattern where they overlap, it is possible to create a macroscopic superposition of different relative phases for the remaining portions of the condensates. We discuss methods for confirming these superpositions.Comment: 7 pages, 5 figure

    Multiparameter estimation in networked quantum sensors

    Get PDF
    We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network

    Applications and implementation of Fourier multiport devices

    Get PDF
    Abstract Fourier multiport devices in which the creation and annihilation operators at the output are related to those at the input through a finite Fourier transform are studied. A general method for the calculation of the output for arbitrary input states is presented. The case of a squeezed state at one of the inputs and vacua at all other inputs is discussed. In the case of thermal states at the input, the device can be used as a thermometer. A factorization technique inspired by the fast Fourier transform leads to a substantial reduction in the number of beam splitters that are required for the experimental implementation of these devices

    Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos

    Full text link
    We present a quantum phase space model of Bose-Einstein condensate (BEC) in a double well potential. In a two-mode Fock-state analysis we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase space information is extracted from the stationary quantum states using the Husimi distribution function. It is shown that the quantum states are localized on the known classical phase space orbits of a nonrigid physical pendulum, and thus the novel phase space characteristics of a nonrigid physical pendulum such as the π\pi motions are seen to be a property of the exact quantum states. Low lying states are harmonic oscillator like libration states while the higher lying states are Schr\"odinger cat-like superpositions of two pendulum rotor states. To study the dynamics in phase space, a comparison is made between a displaced quantum wavepacket and the trajectories of a swarm of points in classical phase space. For a driven double well, it is shown that the classical chaotic dynamics is manifest in the dynamics of the quantum states pictured using the Husimi distribution. Phase space analogy also suggests that a π\pi phase displaced wavepacket put on the unstable fixed point on a separatrix will bifurcate to create a superposition of two pendulum rotor states - a Schr\"odinger cat state (number entangled state) for BEC. It is shown that the choice of initial barrier height and ramping, following a π\pi phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure

    The elusive source of quantum effectiveness

    Full text link
    We discuss two qualities of quantum systems: various correlations existing between their subsystems and the distingushability of different quantum states. This is then applied to analysing quantum information processing. While quantum correlations, or entanglement, are clearly of paramount importance for efficient pure state manipulations, mixed states present a much richer arena and reveal a more subtle interplay between correlations and distinguishability. The current work explores a number of issues related with identifying the important ingredients needed for quantum information processing. We discuss the Deutsch-Jozsa algorithm, the Shor algorithm, the Grover algorithm and the power of a single qubit class of algorithms. One section is dedicated to cluster states where entanglement is crucial, but its precise role is highly counter-intuitive. Here we see that distinguishability becomes a more useful concept.Comment: 8 pages, no figure

    A quantum beam splitter for atoms

    Full text link
    An interferometric method is proposed to controllably split an atomic condensate in two spatial components with strongly reduced population fluctuations. All steps in our proposal are in current use in cold atom laboratories, and we show with a theoretical calculation that our proposal is very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex

    Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement

    Full text link
    A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there is a relation between mean-field chaos and multi-particle entanglement for BECs in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic superpositions in phase-space occur for conditions for which the system displays mean-field chaos. In the present manuscript, more general highly-entangled states are investigated. Mean-field chaos accelerates the emergence of multi-particle entanglement; the boundaries of stable regions are particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the LPHYS0
    corecore