22 research outputs found
The relation between accretion rate and jet power in X-ray luminous elliptical galaxies
Using Chandra X-ray observations of 9 nearby, X-ray luminous ellipticals with
good optical velocity dispersion measurements, we show that a tight correlation
exists between the Bondi accretion rates calculated from the X-ray data and
estimated black hole masses, and the power emerging from these systems in
relativistic jets. The jet powers, inferred from the energies and timescales
required to inflate the cavities observed in the surrounding X-ray emitting
gas, can be related to the accretion rates by a power law model. A significant
fraction (2.2^{+1.0}_{-0.7} per cent, for P_jet=10^{43} erg/s) of the energy
associated with the rest mass of material entering the accretion radius
eventually emerges in the jets. The data also hint that this fraction may rise
slightly with increasing jet power. Our results have significant implications
for studies of accretion, jet formation and galaxy formation. The tight
correlation between P_Bondi and P_jet suggests that the Bondi formulae provide
a reasonable description of the accretion process, despite the likely presence
of magnetic pressure and angular momentum in the accreting gas, and that the
accretion flows are approximately stable over timescales of a few million
years. Our results show that the black hole `engines' at the hearts of large
elliptical galaxies and groups can feed back sufficient energy to stem cooling
and star formation, leading naturally to the observed exponential cut off at
the bright end of the galaxy luminosity function.Comment: Accepted for publication in MNRAS. 10 pages, 4 figures. Includes an
enhanced statistical analysis and some additional data. Conclusions unchange
HadISDH: an updateable land surface specific humidity product for climate monitoring
HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale.
HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg−1 per decade, 0.086 (0.075 to 0.097) g kg−1 per decade and 0.133 (0.119 to 0.148) g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031) g kg−1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El Niño years. The period in between is relatively flat, concurring with previous findings of decreasing relative humidity over land
AGN Heating through Cavities and Shocks
Three comments are made on AGN heating of cooling flows. A simple physical
argument is used to show that the enthalpy of a buoyant radio lobe is converted
to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely
to end up as heat. Second, the properties of the repeated weak shocks in M87
are used to argue that they can plausibly prevent gas close to the AGN from
cooling. As the most significant heating mechanism at work closest to the AGN,
shock heating probably plays a critical role in the feedback mechanism. Third,
results are presented from a survey of AGN heating rates in nearby giant
elliptical galaxies. With inactive systems included, the overall AGN heating
rate is reasonably well matched to the total cooling rate for the sample. Thus,
intermittent AGN outbursts are energetically capable of preventing the hot
atmospheres of these galaxies from cooling and forming stars.Comment: 6 pages, 2 figures, for proceedings of "Heating vs. Cooling in
Galaxies and Clusters of Galaxies," eds H. Boehringer, P. Schuecker, G. W.
Pratt & A. Finoguenov, in Springer-Verlag series "ESO Astrophysics Symposia.
An overview of jets and outflows in stellar mass black holes
In this book chapter, we will briefly review the current empirical
understanding of the relation between accretion state and and outflows in
accreting stellar mass black holes. The focus will be on the empirical
connections between X-ray states and relativistic (`radio') jets, although we
are now also able to draw accretion disc winds into the picture in a systematic
way. We will furthermore consider the latest attempts to measure/order jet
power, and to compare it to other (potentially) measurable quantities, most
importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in
the Space Sciences Series of ISSI - The Physics of Accretion on to Black
Holes (Springer Publisher
'Disc-jet' coupling in black hole X-ray binaries and active galactic nuclei
In this chapter I will review the status of our phenomenological
understanding of the relation between accretion and outflows in accreting black
hole systems. This understanding arises primarily from observing the relation
between X-ray and longer wavelength (infrared, radio) emission. The view is
necessarily a biased one, beginning with observations of X-ray binary systems,
and attempting to see if they match with the general observational properties
of active galactic nuclei.Comment: 28 pages, 15 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Towards an integrated set of surface meteorological observations for climate science and applications
Observations are the foundation for understanding the climate system. Yet, currently available land meteorological data are highly fractured into various global, regional and national holdings for different variables and timescales, from a variety of sources, and in a mixture of formats. Added to this, many data are still inaccessible for analysis and usage. To meet modern scientific and societal demands as well as emerging needs such as the provision of climate services, it is essential that we improve the management and curation of available land-based meteorological holdings. We need a comprehensive global set of data holdings, of known provenance, that is truly integrated both across Essential Climate Variables (ECVs) and across timescales to meet the broad range of stakeholder needs. These holdings must be easily discoverable, made available in accessible formats, and backed up by multi-tiered user support. The present paper provides a high level overview, based upon broad community input, of the steps that are required to bring about this integration. The significant challenge is to find a sustained means to realize this vision. This requires a long-term international program. The database that results will transform our collective ability to provide societally relevant research, analysis and predictions in many weather and climate related application areas across much of the globe
Clusters of galaxies: setting the stage
Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun.
They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %)
and a small fraction of stars, dust, and cold gas, mostly locked in galaxies.
In most clusters, scaling relations between their properties testify that the
cluster components are in approximate dynamical equilibrium within the cluster
gravitational potential well. However, spatially inhomogeneous thermal and
non-thermal emission of the intracluster medium (ICM), observed in some
clusters in the X-ray and radio bands, and the kinematic and morphological
segregation of galaxies are a signature of non-gravitational processes, ongoing
cluster merging and interactions. In the current bottom-up scenario for the
formation of cosmic structure, clusters are the most massive nodes of the
filamentary large-scale structure of the cosmic web and form by anisotropic and
episodic accretion of mass. In this model of the universe dominated by cold
dark matter, at the present time most baryons are expected to be in a diffuse
component rather than in stars and galaxies; moreover, ~50 % of this diffuse
component has temperature ~0.01-1 keV and permeates the filamentary
distribution of the dark matter. The temperature of this Warm-Hot Intergalactic
Medium (WHIM) increases with the local density and its search in the outer
regions of clusters and lower density regions has been the quest of much recent
observational effort. Over the last thirty years, an impressive coherent
picture of the formation and evolution of cosmic structures has emerged from
the intense interplay between observations, theory and numerical experiments.
Future efforts will continue to test whether this picture keeps being valid,
needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 2; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke