8,784 research outputs found

    3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway

    Get PDF
    The landscape of many historic cities and the character of their shallow subsurface environments are defined by a legacy of interaction between anthropogenic and geological processes. Anthropogenic deposits and excavations result from processes ranging from archaeological activities to modern urban development. Hence, in heritage cities, any geological investigation should acknowledge the role of past and ongoing human activities, while any archaeological investigation should be conducted with geological processes in mind. In this paper it is shown that 3D geological and anthropogenic models at different scales can provide a holistic system for the management of the subsurface. It provides a framework for the integration of other spatial and processmodels to help assess the preservationpotential for buried heritage. Such an integrated framework model is thus contributing to a decision support system for sustainable urban (re)development and regeneration in cities, while preserving cultural heritage. A collaborative approach is proposed to enhance research and implementation of combined geological and archaeological modelling for sustainable land use planning and heritage preservation, using York and Bryggen as prime examples. This paper presents the status of 3D framework modelling at Bryggen in Norway as an example

    The unbiased measurement of UV spectral slopes in low luminosity galaxies at z=7

    Full text link
    The Ultraviolet (UV) continuum slope beta, typically observed at z=7 in Hubble Space Telescope (HST) WFC3/IR bands via the J-H colour, is a useful indicator of the age, metallicity, and dust content of high-redshift stellar populations. Recent studies have shown that the redward evolution of beta with cosmic time from redshift 7 to 4 can be largely explained by a build up of dust. However, initial claims that faint z=7 galaxies in the Hubble Ultra Deep Field WFC3/IR imaging (HUDF09) were blue enough to require stellar populations of zero reddening, low metallicity and young ages, hitherto unseen in star-forming galaxies, have since been refuted and revised. Here we revisit the question of how best to measure the UV slope of z=7 galaxies through source recovery simulations, within the context of present and future ultra-deep imaging from HST. We consider how source detection, selection and colour measurement have each biased the measurement of beta in previous studies. After finding a robust method for measuring beta in the simulations (via a power law fit to all the available photometry), we remeasure the UV slopes of a sample of previously published low luminosity z=7 galaxy candidates. The mean UV slope of faint galaxies in this sample appears consistent with an intrinsic distribution of normal star-forming galaxies with beta=-2, although properly decoding the underlying distribution will require further imaging from the ongoing HUDF12 programme. We therefore go on to consider strategies for obtaining better constraints on the underlying distribution of UV slopes at z=7 from these new data, which will benefit particularly from the addition of imaging in a second J-band filter: F140W. We find that a precise and unbiased measurement of beta should then be possible.Comment: 15 pages, 12 figures, accepted to MNRAS with some text and figure alterations in response to referee's repor

    F stars, metallicity, and the ages of red galaxies at z > 1

    Get PDF
    We explore whether the rest-frame near-UV spectral region, observable in high-redshift galaxies via optical spectroscopy, contains sufficient information to allow the degeneracy between age and metallicity to be lifted. We do this by testing the ability of evolutionary synthesis models to reclaim the correct metallicity when fitted to the near-UV spectra of F stars of known (sub-solar and super-solar) metallicity. F stars are of particular interest because the rest-frame near-UV spectra of the oldest known elliptical galaxies at z > 1 appear to be dominated by F stars near to the main-sequence turnoff. We find that, in the case of the F stars, where the HST ultraviolet spectra have high signal:noise, model-fitting with metallicity allowed to vary as a free parameter is rather successful at deriving the correct metallicity. As a result, the estimated turnoff ages of these stars yielded by the model fitting are well constrained. Encouraged by this we have fitted these same variable- metallicity models to the deep, optical spectra of the z \simeq 1.5 mJy radio galaxies 53W091 and 53W069 obtained with the Keck telescope. While the age-metallicity degeneracy is not so easily lifted for these galaxies, we find that even when metallicity is allowed as a free parameter, the best estimates of their ages are still \geq 3 Gyr, with ages younger than 2 Gyr now strongly excluded. Furthermore, we find that a search of the entire parameter space of metallicity and star formation history using MOPED (Heavens et al., 2000) leads to the same conclusion. Our results therefore continue to argue strongly against an Einstein-de Sitter universe, and favour a lambda-dominated universe in which star formation in at least these particular elliptical galaxies was completed somewhere in the redshift range z = 3 - 5.Comment: 10 pages, LaTeX, uses MNRAS style file, incorporates 14 postscript figures, submitted to MNRAS. Changes include: inclusion of single stellar atmosphere model fits; more rigorous calculation of confidence regions; some re-structurin

    Estimating commitment in a digital market place environment

    Get PDF
    The future generation of mobile communication shall be a convergence of mobile telephony and information systems which promises to change people's lives by enabling them to access information when, where and how they want. It presents opportunities to offer multimedia applications and services that meet end-toend service requirements. The Digital Marketplace framework will enable users to have separate contracts for different services on a per call basis. In order for such a framework to function appropriately, there has to be some means for the network operator to know in advance if its network will be able to support the user requirements. This paper discusses the methods by which the network operator will be able to determine if the system will be able to support another user of a certain service class and therefore negotiate parameters like commitment, QoS and the associated cost for providing the service, thus making the Digital Marketplace wor

    The Evolution of 3CR Radio Galaxies from z=1

    Get PDF
    We present the results of a comprehensive re-analysis of the images of a virtually complete sample of 28 powerful 3CR radio galaxies with redshifts 0.6<z<1.8 from the HST archive. Using a two-dimensional modelling technique we have derived scalelengths and absolute magnitudes for a total of 16 3CR galaxies with a median redshift of z=0.8. Our results confirm the basic conclusions of Best, Longair & R\"{o}ttgering (1997, 1998) in that we also find z=1 3CR galaxies to be massive, well-evolved ellipticals, whose infrared emission is dominated by starlight. However, we in fact find that the scalelength distribution of 3CR galaxies at z \simeq 1 is completely indistinguishable from that derived for their low-redshift counterparts from our own recently-completed HST study of AGN hosts at z \simeq 0.2. There is thus no evidence that 3CR radio galaxies at z \simeq 1 are dynamically different from 3CR galaxies at low redshift. Moreover, for a 10-object sub-sample we have determined the galaxy parameters with sufficient accuracy to demonstrate, for the first time, that the z \simeq 1 3CR galaxies follow a Kormendy relation which is indistinguishable from that displayed by low-redshift ellipticals if one allows for purely passive evolution. The implied rather modest level of passive evolution since z \simeq 1 is consistent with that predicted from spectrophotometric models provided one assumes a high formation redshift (z \ge 4) within a low-density Universe. We conclude that there is no convincing evidence for significant dynamical evolution among 3CR galaxies in the redshift interval 0<z<1, and that simple passive evolution remains an acceptable interpretation of the K-z relation for powerful radio galaxies.Comment: 10 pages, 5 figures, minor changes, accepted for publication in MNRA

    Internet authentication based on personal history - a feasibility test

    Get PDF
    On the Internet, there is an uneasy tension between the security and usability of authentication mechanisms. An easy three-part classification is: 'something you know' (e.g. password); 'something you hold' (e.g. device holding digital certificate), and 'who you are' (e.g. biometric assessment) [9]. Each of these has well-known problems; passwords are written down, guessable, or forgotten; devices are lost or stolen, and biometric assays alienate users. We have investigated a novel strategy of querying the user based on their personal history (a 'Rip van Winkle' approach.) The sum of this information is large and well-known only to the individual. The volume is too large for impostors to learn; our observation is that, in the emerging environment, it is possible to collate and automatically query such information as an authentication test. We report a proof of concept study based on the automatic generation of questions from electronic 'calendar' information. While users were, surprisingly, unable to answer randomly generated questions any better than impostors, if questions are categorized according to appropriate psychological parameters then significant results can be obtained. We thus demonstrate the potential viability of this concept

    Nanotrapping and the thermodynamics of optical tweezers

    Get PDF
    Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.Comment: 5 pages, 3 figures, presented at 17th AIP Congress, Brisbane, 200

    Model system studies with a phase separated membrane bioreactor

    Get PDF
    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation
    corecore