8 research outputs found

    Explicit computation of Drinfeld associator in the case of the fundamental representation of gl(N)

    Full text link
    We solve the regularized Knizhnik-Zamolodchikov equation and find an explicit expression for the Drinfeld associator. We restrict to the case of the fundamental representation of gl(N)gl(N). Several tests of the results are presented. It can be explicitly seen that components of this solution for the associator coincide with certain components of WZW conformal block for primary fields. We introduce the symmetrized version of the Drinfeld associator by dropping the odd terms. The symmetrized associator gives the same knot invariants, but has a simpler structure and is fully characterized by one symmetric function which we call the Drinfeld prepotential.Comment: 14 pages, 2 figures; several flaws indicated by referees correcte

    Kontsevich integral for knots and Vassiliev invariants

    Full text link
    We review quantum field theory approach to the knot theory. Using holomorphic gauge we obtain the Kontsevich integral. It is explained how to calculate Vassiliev invariants and coefficients in Kontsevich integral in a combinatorial way which can be programmed on a computer. We discuss experimental results and temporal gauge considerations which lead to representation of Vassiliev invariants in terms of arrow diagrams. Explicit examples and computational results are presented.Comment: 25 pages, 17 figure

    Superpolynomials for toric knots from evolution induced by cut-and-join operators

    Full text link
    The colored HOMFLY polynomials, which describe Wilson loop averages in Chern-Simons theory, possess an especially simple representation for torus knots, which begins from quantum R-matrix and ends up with a trivially-looking split W representation familiar from character calculus applications to matrix models and Hurwitz theory. Substitution of MacDonald polynomials for characters in these formulas provides a very simple description of "superpolynomials", much simpler than the recently studied alternative which deforms relation to the WZNW theory and explicitly involves the Littlewood-Richardson coefficients. A lot of explicit expressions are presented for different representations (Young diagrams), many of them new. In particular, we provide the superpolynomial P_[1]^[m,km\pm 1] for arbitrary m and k. The procedure is not restricted to the fundamental (all antisymmetric) representations and the torus knots, still in these cases some subtleties persist.Comment: 23 pages + Tables (51 pages

    Challenges of beta-deformation

    Full text link
    A brief review of problems, arising in the study of the beta-deformation, also known as "refinement", which appears as a central difficult element in a number of related modern subjects: beta \neq 1 is responsible for deviation from free fermions in 2d conformal theories, from symmetric omega-backgrounds with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras etc. The main attention is paid to the context of AGT relation and its possible generalizations.Comment: 20 page

    Matrix model and dimensions at hypercube vertices

    No full text

    Rectangular superpolynomials for the figure-eight knot 414_1

    No full text
    corecore