1,578 research outputs found
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Observation of the decay
The decay is observed in collision
data corresponding to an integrated luminosity of 3 fb recorded by the
LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first
observation of this decay channel, with a statistical significance of 15
standard deviations. The mass of the meson is measured to be
MeV/c. The branching fraction ratio
is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}.
In both cases, the first uncertainty is statistical and the second is
systematic. No evidence for non-resonant or decays is found.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm
Constraints on the unitarity triangle angle from Dalitz plot analysis of decays
The first study is presented of CP violation with an amplitude analysis of
the Dalitz plot of decays, with , and . The analysis is based on a data sample corresponding to
of collisions collected with the LHCb detector. No
significant CP violation effect is seen, and constraints are placed on the
angle of the unitarity triangle formed from elements of the
Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated
with the decay are determined for the first time. These
measurements can be used to improve the sensitivity to of existing and
future studies of the decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html;
updated to correct figure 9 (numerical results unchanged
A new algorithm for identifying the flavour of mesons at LHCb
A new algorithm for the determination of the initial flavour of
mesons is presented. The algorithm is based on two neural networks and exploits
the hadron production mechanism at a hadron collider. The first network is
trained to select charged kaons produced in association with the meson.
The second network combines the kaon charges to assign the flavour and
estimates the probability of a wrong assignment. The algorithm is calibrated
using data corresponding to an integrated luminosity of 3 fb collected
by the LHCb experiment in proton-proton collisions at 7 and 8 TeV
centre-of-mass energies. The calibration is performed in two ways: by resolving
the - flavour oscillations in
decays, and by analysing flavour-specific
decays. The tagging power measured in decays is found
to be \%, which is an
improvement of about 50\% compared to a similar algorithm previously used in
the LHCb experiment.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
Study of J /Ï production in Jets
The production of J/Ï mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/Ï meson, z(J/Ï)âĄpT(J/Ï)/pT(jet), is measured using jets with pT(jet)>20 GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/Ï)distribution for J/Ï mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/Ï production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the pT fraction carried by prompt J/Ï mesons in jets at any experiment
Study of charmonium production in b -hadron decays and first evidence for the decay Bs0
Using decays to Ï-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fbâ1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ⥠B(b â C X) Ă B(C â ÏÏ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of Ï mesons, ratios RC1C2 ⥠BC1 /BC2 are determined as RÏc0ηc(1S) = 0.147 ± 0.023 ± 0.011, RÏc1ηc(1S) =0.073 ± 0.016 ± 0.006, RÏc2ηc(1S) = 0.081 ± 0.013 ± 0.005,RÏc1 Ïc0 = 0.50 ± 0.11 ± 0.01, RÏc2 Ïc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and Ïc2(2P) states are obtained as RX(3872)Ïc1 < 0.34, RX(3915)Ïc0 < 0.12 andRÏc2(2P)Ïc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andÏc states. The branching fraction of the decay B0s â ÏÏÏ is measured for the first time, B(B0s â ÏÏÏ) = (2.15±0.54±0.28±0.21B)Ă10â6. Here the third uncertainty is due to the branching fraction of the decay B0s â ÏÏ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse Ï polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to ÏÏ and p p asB(ηc(1S)â ÏÏ)/B(ηc(1S)â p p) = 1.79 ± 0.14 ± 0.32
- âŠ