85 research outputs found

    Expression of the helix-loop-helix protein, Id, during branching morphogenesis in the kidney

    Get PDF
    Expression of the helix-loop-helix protein, Id, during branching morphogenesis in the kidney. Id, a member of the helix-loop-helix protein family, is an inhibitor of transcriptional activation by basic-helix-loop-helix proteins. In the developing mouse kidney, Id mRNA was observed as early as 12.5 days post-coitum (dpc) specifically in the condensed mesenchyme surrounding the ureteric buds by in situ hybridization. At 14.5 dpc, Id mRNA was localized to the collecting tubules and developing glomeruli while the surrounding mesenchyme lacked Id hybridization. From birth to day 10 postnatal, Id mRNA is were localized in to the collecting tubules, immature glomeruli and renal pelvis. In the adult kidney, Id mRNA was detectable by Northern blot analysis but no cell type-specific localization was noted by in situ hybridization. These results indicate a role for HLH-bHLH proteins in the differentiation of the epithelial structures of the kidney

    A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus

    Get PDF
    During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and subsequently migrates and differentiates into many types of cells. The transcription factor Snai2, which is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses enhanced green fluorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed eGFP expression not only in the pre-migratory and migrating CNC, but also the differentiating CNC. This transgenic line can be used directly to detect deficiencies in CNC development at various stages, including subtle perturbation of CNC differentiation. In situ hybridization and immunohistochemistry confirm that Snai2 is re-expressed in the differentiating CNC. Using a separate transgenic Wnt reporter line, we show that canonical Wnt signaling is also active in the differentiating CNC. Blocking Wnt signaling shortly after CNC migration causes reduced snai2 expression and impaired differentiation of CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 re-expression and CNC differentiation

    Conditional deletion of β1-integrin from the developing lens leads to loss of the lens epithelial phenotype

    Get PDF
    Abstractβ1-integrins are cell surface receptors that participate in sensing the cell's external environment. We used the Cre-lox system to delete β1-integrin in all lens cells as the lens vesicle transitions into the lens. Adult mice lacking β1-integrin in the lens are microphthalmic due to apoptosis of the lens epithelium and neonatal disintegration of the lens fibers. The first morphological alterations in β1-integrin null lenses are seen at 16.5 dpc when the epithelium becomes disorganized and begins to upregulate the fiber cell markers β- and γ-crystallins, the transcription factors cMaf and Prox1 and downregulate Pax6 levels demonstrating that β1-integrin is essential to maintain the lens epithelial phenotype. Furthermore, β1-integrin null lens epithelial cells upregulate the expression of α-smooth muscle actin and nuclear Smad4 and downregulate Smad6 suggesting that β1-integrin may brake TGFβ family signaling leading to epithelial–mesenchymal transitions in the lens. In contrast, β1-integrin null lens epithelial cells show increased E-cadherin immunoreactivity which supports the proposed role of β1-integrins in mediating complete EMT in response to TGFβ family members. Thus, β1-integrin is required to maintain the lens epithelial phenotype and block inappropriate activation of some aspects of the lens fiber cell differentiation program

    Lens Extrusion from Laminin Alpha 1

    Get PDF
    We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant, lama1a69/a69. Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of laminin α1 in lens development, a detailed analysis of the lens defects seen in these mutants was not reported. In the present study, we analyze the lenticular anomalies seen in the lama1a69/a69 mutants and show that the lens defects result from the anterior extrusion of lens material from the eye secondary to structural defects in the lens capsule and developing corneal epithelium associated with basement membrane loss. Our analysis provides further insights into the role of the lens capsule and corneal basement membrane in the structural integrity of the developing eye

    Palm is expressed in both developing and adult mouse lens and retina

    Get PDF
    BACKGROUND: Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive membrane and process formation in neurons. Earlier studies have shown brain preferred Palm expression, although this protein is a major water insoluble protein in chicken lens fiber cells and the Palm gene may be regulated by Pax6. METHODS: The expression profile of Palm protein in the embryonic, newborn and adult mouse eye as well as dissociated retinal neurons was determined by confocal immunofluorescence. The relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina were determined by real time rt-PCR. RESULTS: In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm expression transiently upregulates during the formation of optic nerve as well as in the formation of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA was found at much higher levels relative to Palm2 or PalmD in both the retina and lens. CONCLUSION: Palm is the major paralemmin family member expressed in the retina and lens and its expression in the retina transiently upregulates during active neurite outgrowth. The expression pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial for the increase in membrane formation during lens fiber cell differentiation

    A new Transgenic Reporter Line Reveals Wnt-dependent Snai2 Re-expression and Cranial Neural Crest Differentiation in Xenopus

    Get PDF
    During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and subsequently migrates and diferentiates into many types of cells. The transcription factor Snai2, which is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses enhanced green fuorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed eGFP expression not only in the pre-migratory and migrating CNC, but also the diferentiating CNC. This transgenic line can be used directly to detect defciencies in CNC development at various stages, including subtle perturbation of CNC diferentiation. In situ hybridization and immunohistochemistry confrm that Snai2 is re-expressed in the diferentiating CNC. Using a separate transgenic Wnt reporter line, we show that canonical Wnt signaling is also active in the diferentiating CNC. Blocking Wnt signaling shortly after CNC migration causes reduced snai2 expression and impaired diferentiation of CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 reexpression and CNC diferentiation

    Evaluating insecticide resistance across African districts to aid malaria control decisions

    Get PDF
    Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data

    Indigenous plants promote insect biodiversity in urban greenspaces

    Get PDF
    The contribution of urban greenspaces to support biodiversity and provide benefits for people is increasingly recognized. However, ongoing management practices favor vegetation oversimplification, often limiting greenspaces to lawns and tree canopy rather than multi-layered vegetation that includes under- and midstorey, and the use of nonnative species. These practices hinder the potential of greenspaces to sustain indigenous biodiversity, particularly for taxa like insects that rely on plants for food and habitat. Yet, little is known about which plant species may maximize positive outcomes for taxonomically and functionally diverse insect communities in greenspaces. Additionally, while cities are expected to experience high rates of introductions, quantitative assessments of the relative occupancy of indigenous vs. introduced insect species in greenspace are rare, hindering understanding of how management may promote indigenous biodiversity while limiting the establishment of introduced insects. Using a hierarchically replicated study design across 15 public parks, we recorded occurrence data from 552 insect species on 133 plant species, differing in planting design element (lawn, midstorey, and tree canopy), midstorey growth form (forbs, lilioids, graminoids, and shrubs) and origin (nonnative, native, and indigenous), to assess (1) the relative contributions of indigenous and introduced insect species and (2) which plant species sustained the highest number of indigenous insects. We found that the insect community was overwhelmingly composed of indigenous rather than introduced species. Our findings further highlight the core role of multi-layered vegetation in sustaining high insect biodiversity in urban areas, with indigenous midstorey and canopy representing key elements to maintain rich and functionally diverse indigenous insect communities. Intriguingly, graminoids supported the highest indigenous insect richness across all studied growth forms by plant origin groups. Our work highlights the opportunity presented by indigenous understory and midstorey plants, particularly indigenous graminoids, in our study area to promote indigenous insect biodiversity in urban greenspaces. Our study provides a blueprint and stimulus for architects, engineers, developers, designers, and planners to incorporate into their practice plant species palettes that foster a larger presence of indigenous over regionally native or nonnative plant species, while incorporating a broader mixture of midstorey growth forms
    corecore