118 research outputs found
Soybean yields and plant composition as affected by phosphorus and potassium fertilizers
The primary objective of this study was to determine if soybean grain yields could be predicted by the P and K content of the growing plant. A supporting objective was to find what plant parts should be taken, and at what stage of growth, to give the best relationship. Multiple curvilinear regression analysis was used to determine this relationship from data collected in four field experiments.
Yields, chemical composition of soybean plant parts and other data were available from four similar fertilizer experiments conducted at various locations in Iowa in 1958. A randomized block 9 x 9 central composite design, containing various combinations of P and K fertilizer rates, was used in all experiments. Soybean plant samples from each plot, taken in three different growth stages, were separated into various plant parts and chemically analyzed for total P and K contents. (Growth stages used were: Stage 5-Nine to 10 trifoliate leaves unrolled with stem branching evident; full bloom with withered flowers in lower leaf axils. Stage 7-Pods plainly evident in plant tops; lower pods nearly full length with beans developing; flowering ceased. Stage 9-Bottom leaves beginning to yellow; top pods almost fully developed with beans nearing green bean stage.
The influence of nitrogen and phosphorus ferilization on nutrient status and profitability of Bromegrass on Ida soils
This study was undertaken to determine the profitability and the feasibility of fertilizing bromegrass for grazing in the Monona-Ida-Hamburg soil association area. This area is well adapted to growing forage crops. Because of the high content of calcium and potassium, alfalfa grows well if phosphorus is applied. Bromegrass is able in some way to get nitrogen from alfalfa, and the two crops grow well together. The bloat danger in pasturing alfalfa or bromegrass-alfalfa mixtures, however, is well known to cattlemen in the area. Many believe the cost of nitrogen fertilizer to maintain productivity of bromegrass pastures is less than the cost of losses from bloat on bromegrass-alfalfa pastures.
The profitability of fertilizing bromegrass stands is examined in Part I of the study. The feasibility is examined in Part II. In Part I, returns at three levels of nitrogen cost and beef price and at three conversion ratios of forage to beef are calculated on the basis of experimental yields
Stoichiometry of HLA Class II-Invariant Chain Oligomers
BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii
Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector
Legionella pneumophila is an intracellular pathogen responsible for Legionnaires' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in the lumen of its phagosome, particularly in the early phase of infection. However, in all cases, the molecular mechanisms underlying this observation remain unknown. In this report, we describe the identification and characterization of a Legionella protein termed SidK that specifically targets host v-ATPase, the multi-subunit machinery primarily responsible for organelle acidification in eukaryotic cells. Our results indicate that after being injected into infected cells by the Dot/Icm secretion system, SidK interacts with VatA, a key component of the proton pump. Such binding leads to the inhibition of ATP hydrolysis and proton translocation. When delivered into macrophages, SidK inhibits vacuole acidification and impairs the ability of the cells to digest non-pathogenic E. coli. We also show that a domain located in the N-terminal portion of SidK is responsible for its interactions with VatA. Furthermore, expression of sidK is highly induced when bacteria begin to enter new growth cycle, correlating well with the potential temporal requirement of its activity during infection. Our results indicate that direct targeting of v-ATPase by secreted proteins constitutes a virulence strategy for L. pneumophila, a vacuolar pathogen of macrophages and amoebae
Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care - An analysis of the OUTCOMEREA database
Introduction: Enterococcus species are associated with an increased morbidity in intraabdominal infections (IAI). However, their impact on mortality remains uncertain. Moreover, the influence on outcome of the appropriate or inappropriate status of initial antimicrobial therapy (IAT) is subjected to debate, except in septic shock. The aim of our study was to evaluate whether an IAT that did not cover Enterococcus spp. was associated with 30-day mortality in ICU patients presenting with IAI growing with Enterococcus spp. Material and methods: Retrospective analysis of French database OutcomeRea from 1997 to 2016. We included all patients with IAI with a peritoneal sample growing with Enterococcus. Primary endpoint was 30-day mortality. Results: Of the 1017 patients with IAI, 76 (8%) patients were included. Thirty-day mortality in patients with inadequate IAT against Enterococcus was higher (7/18 (39%) vs 10/58 (17%), p = 0.05); however, the incidence of postoperative complications was similar. Presence of Enterococcus spp. other than E. faecalis alone was associated with a significantly higher mortality, even greater when IAT was inadequate. Main risk factors for having an Enterococcus other than E. faecalis alone were as follows: SAPS score on day 0, ICU-acquired IAI, and antimicrobial therapy within 3 months prior to IAI especially with third-generation cephalosporins. Univariate analysis found a higher hazard ratio of death with an Enterococcus other than E. faecalis alone that had an inadequate IAT (HR = 4.4 [1.3-15.3], p = 0.019) versus an adequate IAT (HR = 3.1 [1.0-10.0], p = 0.053). However, after adjusting for confounders (i.e., SAPS II and septic shock at IAI diagnosis, ICU-acquired peritonitis, and adequacy of IAT for other germs), the impact of the adequacy of IAT was no longer significant in multivariate analysis. Septic shock at diagnosis and ICU-acquired IAI were prognostic factors. Conclusion: An IAT which does not cover Enterococcus is associated with an increased 30-day mortality in ICU patients presenting with an IAI growing with Enterococcus, especially when it is not an E. faecalis alone. It seems reasonable to use an IAT active against Enterococcus in severe postoperative ICU-acquired IAI, especially when a third-generation cephalosporin has been used within 3 months. © 2019 The Author(s)
- …