3,737 research outputs found
The 1984 NASA/ASEE summer faculty fellowship program
An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy
Principles of Semiconductor Surface Reconstruction
Semiconductor surfaces are known to reconstruct, i.e., their surface atomic geometries differ from those of the corresponding surface planes in the bulk material. For clean tetrahedrally coordinated semiconductors, these reconstructed geometries are shown to be predicted by five simple principles. These principles are illustrated by the specific examples of Si(100)-(2x1), Si(111)-(2x1), GaAs(100)-c(2x8), GaAs(111)-(2x2), and relaxed zincblende (110) surfaces. The concept of universal (i.e., material independent) semiconductor surface structures is introduced and shown to be characteristic of the cleavage surfaces of tetrahedrally coordinated compound semiconductors. The role of scanning tunneling microscopy in identifying and validating these principles is highlighted
Tunneling Anisotropic Magnetoresistance of Helimagnet Tunnel Junctions
We theoretically investigate the angular and spin dependent transport in
normal-metal/helical-multiferroic/ferromagnetic heterojunctions. We find a
tunneling anisotropic magnetoresistance (TAMR) effect due to the spiral
magnetic order in the tunnel junction and to an effective spin-orbit coupling
induced by the topology of the localized magnetic moments in the multiferroic
spacer.
The predicted TAMR effect is efficiently controllable by an external electric
field due to the magnetoelectric coupling
Spin-polarized tunneling through randomly transparent magnetic junctions: Reentrant magnetoresistance approaching the Julliere limit
Electron conductance in planar magnetic tunnel junctions with long-range
barrier disorder is studied within Glauber-eikonal approximation enabling exact
disorder ensemble averaging by means of the Holtsmark-Markov method. This
allows us to address a hitherto unexplored regime of the tunneling
magnetoresistance effect characterized by the crossover from
momentum-conserving to random tunneling as a function of the defect
concentration. We demonstrate that such a crossover results in a reentrant
magnetoresistance: It goes through a pronounced minimum before reaching
disorder- and geometry-independent Julliere's value at high defect
concentrations.Comment: 7 pages, 5 figures, derivation of Eq. (39) added, errors in Ref. 7
correcte
Impurity-induced tuning of quantum well states in spin-dependent resonant tunneling
We report exact model calculations of the spin-dependent tunneling in double
magnetic tunnel junctions in the presence of impurities in the well. We show
that the impurity can tune selectively the spin channels giving rise to a wide
variety of interesting and novel transport phenomena. The tunneling
magnetoresistance, the spin polarization and the local current can be
dramatically enhanced or suppressed by impurities. The underlying mechanism is
the impurity-induced shift of the quantum well states (QWS) which depends on
the impurity potential, impurity position and the symmetry of the QWS.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Surface nano-patterning through styrene adsorption on Si(100)
We present an ab initio study of the structural and electronic properties of
styrene molecules adsorbed on the dimerized Si(100) surface at different
coverages, ranging from the single-molecule to the full monolayer. The
adsorption mechanism primarily involves the vinyl group via a [2+2]
cycloaddition process that leads to the formation of covalent Si-C bonds and a
local surface derelaxation, while it leaves the phenyl group almost
unperturbed. The investigation of the functionalized surface as a function of
the coverage (e.g. 0.5 -- 1 ML) and of the substrate reconstruction reveals two
major effects. The first results from Si dimer-vinyl interaction and concerns
the controlled variation of the energy bandgap of the interface. The second is
associated to phenyl-phenyl interactions, which gives rise to a regular pattern
of electronic wires at surface, stemming from the pi-pi coupling. These
findings suggest a rationale for tailoring the surface nano-patterning of the
surface, in a controlled way.Comment: 19 pages (preprint), 4 figures, supplementary materia
High-frequency spin valve effect in ferromagnet-semiconductor-ferromagnet structure based on precession of injected spins
New mechanism of magnetoresistance, based on tunneling-emission of spin
polarized electrons from ferromagnets (FM) into semiconductors (S) and
precession of electron spin in the semiconductor layer under external magnetic
field, is described. The FM-S-FM structure is considered, which includes very
thin heavily doped (delta-doped) layers at FM-S interfaces. At certain
parameters the structure is highly sensitive at room-temperature to variations
of the field with frequencies up to 100 GHz. The current oscillates with the
field, and its relative amplitude is determined only by the spin polarizations
of FM-S junctions at relatively large bias voltage.Comment: 5 pages, 2 figures, (v2) new plot with a dependence of current J on
magnetic field H added in Fig.2 (top panel), minor amendments in the text;
(v3) minor typos corrected. To appear in Phys. Rev. Letter
Tunnel junctions of unconventional superconductors
The phenomenology of Josephson tunnel junctions between unconventional
superconductors is developed further. In contrast to s-wave superconductors,
for d-wave superconductors the direction dependence of the tunnel matrix
elements that describe the barrier is relevant. We find the full I-V
characteristics and comment on the thermodynamical properties of these
junctions. They depend sensitively on the relative orientation of the
superconductors. The I-V characteristics differ from the normal s-wave RSJ-like
behavior.Comment: 4 pages, revtex, 4 (encapsulated postscript) figures (figures
replaced
General aviation piston-engine exhaust emission reduction
To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls
Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions
Application of Bardeen's tunneling theory to magnetic tunnel junctions having
a general degree of atomic disorder reveals the close relationship between
magneto-conduction and voltage-driven pseudo-torque, as well as the thickness
dependence of tunnel-polarization factors. Among the results: 1) The torque
generally varies as sin theta at constant applied voltage. 2) Whenever
polarization factors are well defined, the voltage-driven torque on each moment
is uniquely proportional to the polarization factor of the other magnet. 3) At
finite applied voltage, this relation predicts significant voltage-asymmetry in
the torque. For one sign of voltage the torque remains substantial even when
the magnetoconductance is greatly diminished. 4) A broadly defined junction
model, called ideal middle, allows for atomic disorder within the magnets and
F/I interface regions. In this model, the spin dependence of a state-weighting
factor proportional to the sum over general state index of evaluated within the
(e.g. vacuum) barrier generalizes the local state density in previous theories
of the tunnel-polarization factor. 5) For small applied voltage,
tunnel-polarization factors remain legitimate up to first order in the inverse
thickness of the ideal middle. An algebraic formula describes the first-order
corrections to polarization factors in terms of newly defined lateral
auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few
notations and equations are changed, and references completed. No change in
results. 17 pages including 4 figure
- …