506 research outputs found

    A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health

    Full text link
    Over 80 taxa of mostly agriculturally important legumes were surveyed as sources of the metabolites, genistein and daidzein. Remarkably high concentrations (over 2 g · kg–1 dry weight) of the anticancer metabolite, genistein, were found in the leaves of Psoralea corylifolia (Indian bread root). All other legumes, with the exception of fermented soybean miso, had genistein levels <400 mg · kg–1 dry weight. Concentrations of over 1 g · kg–1 dry weight and 0.95 g · kg–1 dry weight of the anticancer metabolite, daidzein, were found in the stems of the fava bean (Vicia faba) and roots of kudzu vine (Pueraria lobata)' respectively. From this survey, our results indicate that the legumes, lupine (Lupinus spp.), fava bean, (Vicia faha), soybeans (Glycine max), kudzu (Pueraria lobata), and psoralea (Psoralea corylifolia), are excellent food sources for both genistein and daidzein. Miso, a fermented soybean product, is also a rich source of both isoflavones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63131/1/acm.1997.3.7.pd

    Upregulation of Isoflavonoids and Soluble Proteins in Edible Legumes by Light and Fungal Elicitor Treatments

    Full text link
    Objective: In this study, our working hypothesis was that continuous light and fungal elicitation treatment of legume seedlings would lead to enhanced levels of isoflavonoids and soluble proteins. Results: Based on short-term light and dark treatments, isoflavonoid (genistein, genistin, daidzein, and daidzin) and soluble protein concentrations were significantly upregulated in the "light" environment compared to the "dark" environment for all edible legume species (kudzu vine, soybean, garbanzo bean, fava bean, mung bean, adzuki bean) that were tested. Kudzu seedlings showed the highest levels of both isoflavonoids and soluble proteins after light-elicited upregulation compared to the other legumes analyzed. All legumes showed less up-regulation of isoflavonoid synthesis when treated with Phytophtora sojae fungal elicitor. Oligosaccharide fungal elicitor caused no such upregulation. Conclusions: The findings in this study show that edible legume seedlings have enhanced levels of isoflavonoids and soluble proteins when they are grown in the light compared to the conventional practice of growing such seedlings in the dark. This will clearly result in significant improvement in their nutritive and medicinal value.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63222/1/107555303765551598.pd

    Coordinated dispersal and pre-isthmian assembly of the central American ichthyofauna

    Get PDF
    © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. We document patterns of coordinated dispersal over evolutionary time frames in heroine cichlids and poeciliine live-bearers, the two most species-rich clades of freshwater fishes in the Caribbean basin. Observed dispersal rate (DO) values were estimated from time-calibrated molecular phylogenies in LAGRANGE+, a modified version of the ML-based parametric biogeographic program LAGRANGE. DO is measured in units of wallaces (wa) as the number of biogeographic range-expansion events per million years. DO estimates were generated on a dynamic paleogeographic landscape of five areas over three time intervals from Upper Cretaceous to Recent. Expected dispersal rate (DE) values were generated from alternative paleogeographic models, with dispersal rates proportional to target area and source-river discharge volume, and inversely proportional to paleogeographic distance. Correlations between DO and DE were used to assess the relative contributions of these three biogeographic parameters. DO estimates imply a persistent dispersal corridor across the Eastern (Antillean) margin of the Caribbean plate, under the influence of prevailing and perennial riverine discharge vectors such as the Proto-Orinoco-Amazon river. Ancestral area estimation places the earliest colonizations of the Greater Antilles and Central America during the Paleocene-Eocene (ca. 58-45 Ma), potentially during the existence of an incomplete Paleogene Arc (∼59 Ma) or Lesser Antilles Arc (∼45 Ma), but predating the GAARlandia land bridge (∼34-33 Ma). Paleogeographic distance is the single best predictor of DO. The Western (Central American) platemargin did not serve as a dispersal corridor until the LateNeogene (12-0 Ma), and contributed relatively little to the formation of modern distributions

    Genetic Variability in Developing Periodical Cicadas

    Get PDF
    There are few events in nature that are more predictable than the emergence of periodical cicadas. The insects emerge from the ground after 13 or 17 years (depending on brood and species) of development. Karlin et al., (1991) biochemically examined over 750 Magicicada tredecassini belonging to Brood XIX which emerged during the spring of 1985. In this study they found evidence for rapid deterioration of heterozygosity for two esterase loci,Gi-3-pdh and Gpi, and suggested that this deterioration may be related to differential mating classes. To test this hypothesis, we re-sampled from this same brood at the same location during fall (1993) and winter (1994), nine years into the 13 year development of this brood. The current biochemical data suggest no significant deviations from Hardy-Weinberg expectations for either Est-3, Gl-3- pdh or Pgm-1, but in several cases Est-1 or Est-2 displayed significant departures. Our failure to find excess heterozygosity in the nymphal sample is interpreted to support weakly the size-mediated mating system hypothesis

    Bruguiera Species in Hawai'i: Systematic Considerations and Ecological Implications

    Get PDF
    At least two mangrove tree species in the genus Bruguiera were introduced into Hawai'i from the Philippines in 1922. The two are described in the most current manual on the flora of Hawai'i as B. gymnorrhiza (L.) Lamk. and B. parviflora (Roxb.) W. & A. ex. Griff. There has, however, been some confusion since its introduction as to the identity of what is currently known as B. gymnorrhiza. Early Hawaiian flora manuals (1948 and earlier) and ecological research reports up until at least 1972 referred to the species as B. sexangula (Lour.) Poir. Flora manuals published after 1948 and recent ecological papers describe the species as B. gymnorrhiza. The reason for the change appears to have been based strictly on an assessment of flower color. In this study we collected specimens of Bruguiera from Hawai'i and known samples of B. sexangula, B. gymnorrhiza, and B. exaristata C. G. Rogers from Australia or Micronesia. Based on a multivariate comparison of flower and hypocotyl morphology of this material, an assessment of other diagnostic attributes, and amplified fragment length polymorphism (AFLP) mapping, we conclude that the primary, and perhaps only, Bruguiera species present in Hawai'i is B. sexangula. We argue that the current distribution of Bruguiera in Hawai'i fits the pattern that might be expected of B. sexangula, which is less salt tolerant than B. gymnorrhiza. We also conclude that sufficient regional variation occurs to warrant morphological and genetic comparisons of the three species across their whole geographic range

    Non-perturbative effects and the resummed Higgs transverse momentum distribution at the LHC

    Full text link
    We investigate the form of the non-perturbative parameterization in both the impact parameter (b) space and transverse momentum (p_T) space resummation formalisms for the transverse momentum distribution of single massive bosons produced at hadron colliders. We propose to analyse data on Upsilon hadroproduction as a means of studying the non-perturbative contribution in processes with two gluons in the initial state. We also discuss the theoretical errors on the resummed Higgs transverse momentum distribution at the LHC arising from the non-perturbative contribution.Comment: 22 pages, 10 figure

    Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress.

    Get PDF
    In the asexual blood stages of malarial infection, merozoites invade erythrocytes and replicate within a parasitophorous vacuole to form daughter cells that eventually exit (egress) by sequential rupture of the vacuole and erythrocyte membranes. The current model is that PKG, a malarial cGMP-dependent protein kinase, triggers egress, activating malarial proteases and other effectors. Using selective inhibitors of either PKG or cysteine proteases to separately inhibit the sequential steps in membrane perforation, combined with video microscopy, electron tomography, electron energy loss spectroscopy, and soft X-ray tomography of mature intracellular Plasmodium falciparum parasites, we resolve intermediate steps in egress. We show that the parasitophorous vacuole membrane (PVM) is permeabilized 10-30 min before its PKG-triggered breakdown into multilayered vesicles. Just before PVM breakdown, the host red cell undergoes an abrupt, dramatic shape change due to the sudden breakdown of the erythrocyte cytoskeleton, before permeabilization and eventual rupture of the erythrocyte membrane to release the parasites. In contrast to the previous view of PKG-triggered initiation of egress and a gradual dismantling of the host erythrocyte cytoskeleton over the course of schizont development, our findings identify an initial step in egress and show that host cell cytoskeleton breakdown is restricted to a narrow time window within the final stages of egress

    Burn injury leads to increased long-term susceptibility to respiratory infection in both mouse models and population studies

    Get PDF
    Background: Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about longterm consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients' immune responses. Methods: Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). Results and conclusions: The burn injured cohort contained 14893 adult patients from 1980-2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27-2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85-2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09-2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the immune response

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors
    corecore