10 research outputs found

    Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery.

    No full text
    Duchenne muscular dystrophy (DMD), the commonest form of muscular dystrophy, is caused by lack of dystrophin. One of the most promising therapeutic approaches is antisense-mediated elimination of frame-disrupting mutations by exon skipping. However, this approach faces two major hurdles: limited applicability of each individual target exon and uncertain function and stability of each resulting truncated dystrophin. Skipping of exons 45-55 at the mutation hotspot of the DMD gene would address both issues. Theoretically it could rescue more than 60% of patients with deletion mutations. Moreover, spontaneous deletions of this specific region are associated with asymptomatic or exceptionally mild phenotypes. However, such multiple exon skipping of exons 45-55 has proved technically challenging. We have therefore designed antisense oligo (AO) morpholino mixtures to minimize self- or heteroduplex formation. These were tested as conjugates with cell-penetrating moieties (vivo-morpholinos). We have tested the feasibility of skipping exons 45-55 in H2K-mdx52 myotubes and in mdx52 mice, which lack exon 52. Encouragingly, with mixtures of 10 AOs, we demonstrated skipping of all 10 exons in vitro, in H2K-mdx52 myotubes and on intramuscular injection into mdx52 mice. Moreover, in mdx52 mice in vivo, systemic injections of 10 AOs induced extensive dystrophin expression at the subsarcolemma in skeletal muscles throughout the body, producing up to 15% of wild-type dystrophin protein levels, accompanied by improved muscle strength and histopathology without any detectable toxicity. This is a unique successful demonstration of effective rescue by exon 45-55 skipping in a dystrophin-deficient animal model

    Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease

    No full text
    Remodeling is a stringently controlled process that enables adequate response of muscle cells to constant physical stresses. In this process, different kinds of stimuli have to be sensed and converted into biochemical signals that ultimately lead to alterations of muscle phenotype. Several multiprotein complexes located in the sarcomere and organized on the titin molecular spring have been identified as stress sensors and signal transducers. In this review, we focus on Ankrd1/CARP and Ankrd2/Arpp proteins, which belong to the muscle ankyrin repeat protein family (MARP) involved in a mechano-signaling pathway that links myofibrillar stress response to muscle gene expression. Apart from the mechanosensory function, they have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. Their altered expression has been demonstrated in neuromuscular disorders, cardiovascular diseases, as well as in tumors, suggesting a role in pathological processes. Although analyzed in a limited number of patients, there is a considerable body of evidence that MARP proteins could be suitable candidates for prognostic and diagnostic biomarkers

    Mitochondrial Biogenesis and Quality Control

    No full text
    corecore