84 research outputs found
Magnetic measurements and simulations for a 4-magnet dipole chicane for the International Linear Collider
T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. We describe magnetic measurements and simulations for the 4-magnet chicane used in T-474
Muon (g-2) Technical Design Report
The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new
experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has
measured the muon anomalous precession frequency to an uncertainty
of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data
collected in four storage ring configurations during its first physics run in
2018. When combined with a precision measurement of the magnetic field of the
experiment's muon storage ring, the precession frequency measurement determines
a muon magnetic anomaly of (0.46 ppm). This article describes the multiple techniques employed
in the reconstruction, analysis and fitting of the data to measure the
precession frequency. It also presents the averaging of the results from the
eleven separate determinations of \omega_a, and the systematic uncertainties on
the result.Comment: 29 pages, 19 figures. Published in Physical Review
Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7C. The measured field is weighted by the muon distribution resulting in , the denominator in the ratio / that together with known fundamental constants yields . The reported uncertainty on for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb
- …