11 research outputs found

    Bovine somatotropin and rumen-undegradable protein effects on skeletal growth in prepubertal dairy heifers

    No full text
    The objectives of this study were to determine the effects of dietary rumen-undegradable protein (RUP) and bovine somatotropin (bST) during the period from weaning until puberty on body weight (BW) and skeletal growth rates and age at puberty. Fifty-one Holstein heifers at 90 d of age were randomly assigned to 4 treatment groups consisting of 0.1 mg/kg BW per day of bST and 2% added dietary RUP ( dry matter basis) applied in a 2 x 2 factorial design (n = 13 per group, except bST with no RUP group, n = 12). From 90 to 314 d, bST increased average daily gain (ADG) by 0.07 kg/ d and BW by 16.2 kg, while added RUP increased ADG by 0.10 kg/d and BW by 21.4 kg. Both bST and added RUP effects on BW and ADG were additive. Skeletal growth rates, as measured by withers height (WH) and hip height (HH) were increased by both bST and added RUP. Somatotropin and RUP increased WH by 1.8 and 2.7 cm and hip height by 2.5 and 4.0 cm, respectively, at 314 d of age. Growth curves showed that added RUP effects on rates of BW, WH, and HH growth were greatest from 90 to 150 d age and diminished thereafter, suggesting that protein was limiting during this time period. Conversely, bST effects tended to be greater as the heifers approached puberty, but only in the presence of added RUP. Age at puberty was not affected by treatment, averaging 314 d of age across treatments. From 314 to 644 d of age, rates of BW, WH, and HH growth were similar among treatment groups. However, treatment differences present at 314 d of age persisted through 644 d of age, more than 10 mo after treatments ceased. These results suggest that protein during the early postweaning period and bST during the 200 to 300 d of age period just prior to puberty could be used to accelerate simultaneous increases in both BW and skeletal growth rates in dairy heifers without reducing age at puberty

    Bovine somatotropin and rumen-undegradable protein effects in prepubertal dairy heifers: Effects on body composition and organ and tissue weights

    No full text
    The objectives of this study were to determine the effect of recombinant bovine somatotropin (bST) and added dietary rumen undegradable protein (RUP) on organ and tissue weights and body composition in growing dairy heifers. Thirty-two Holstein heifers were in the experiment, 8 killed initially at 3 mo of age, with the remaining 24 Holstein heifers randomly assigned to treatments (n = 6) consisting of 0.1 mg/kg of body weight per day of bST and 2% added dietary RUP ( dry matter basis) applied in a 2 x 2 factorial design. A total of 6 heifers per treatment group ( 3 each at 5 and 10 mo of age), were slaughtered to determine body composition and organ masses. Feed intake measured from group intakes were increased by 0.25 and 0.35 kg/d with bST and RUP, respectively. Administration of bST tended to increase the weights of visceral organs including heart, kidney, and spleen by 16, 16, and 38%, respectively. At 10 mo of age, there was a trend for increased empty body weights (EBW) and non-carcass components for heifers treated with bST, but there were no effects of RUP. Body components and organ weights, expressed as a percentage of BW were not affected by RUP or bST. Somatotropin increased ash weight at 10 mo without affecting amounts of protein, fat, and energy. Rates of ash deposition between 3 and 10 mo of age were increased 7 and 4 g/d by bST and RUP, respectively. There were no treatment effects on rates of body fat, protein, and energy deposition. Bovine somatotropin and RUP altered the metabolism of growing heifers in a manner that was consistent with increased rates of skeletal growth. This suggests that nutritional and endocrine manipulations could increase growth rates of skeletal tissues without increasing fat deposition in prepubertal dairy heifers

    Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis

    No full text

    Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    No full text
    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health

    The Effects of 5-fluorouracil Alone and in Combination with 13-cis Retinoic Acid and Vitamin D3 on Human Oral Squamous Cell Carcinoma Lines

    No full text
    corecore