125 research outputs found

    Immuno-Thrombotic Effects of Platelet Serotonin

    Get PDF
    Platelets transport and store serotonin at a high concentration in dense granules and release it upon activation. Abnormal serotonin concentrations in the blood plasma or increased platelet serotonin release promote the development of thrombosis, sepsis, allergic asthma, myocardial infarction, and stroke. Consequently, experimental data suggest possible benefits of serotonin receptor blockade or inhibition of platelet serotonin uptake in the indicated human diseases. Here, we highlight the current state of basic biological research regarding the role of platelet serotonin in normal and pathophysiological conditions focusing on thrombotic and inflammatory diseases. We also describe the possible clinical applicability of targeting thrombo-immune-modulatory effects of platelet serotonin to treat common health problems

    p38 mitogen-activated protein kinase activation during platelet storage: Consequences for platelet recovery and hemostatic function in vivo

    Get PDF
    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-α and GPV. We recently demonstrated that tumor necrosis factor-α converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37°C or 22°C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets

    Serotonin Antagonism Improves Platelet Inhibition in Clopidogrel Low-Responders after Coronary Stent Placement: An In Vitro Pilot Study

    Get PDF
    Increased residual platelet reactivity remains a burden for coronary artery disease (CAD) patients who received a coronary stent and do not respond sufficiently to treatment with acetylsalicylic acid and clopidogrel. We hypothesized that serotonin antagonism reduces high on-treatment platelet reactivity. Whole blood impedance aggregometry was performed with arachidonic acid (AA, 0.5 mM) and adenosine diphosphate (ADP, 6.5 ”M) in addition to different concentrations of serotonin (1–100 ”M) in whole blood from 42 CAD patients after coronary stent placement and 10 healthy subjects. Serotonin increased aggregation dose-dependently in CAD patients who responded to clopidogrel treatment: After activation with ADP, aggregation increased from 33.7±1.3% to 40.9±2.0% in the presence of 50 ”M serotonin (p<0.05) and to 48.2±2.0% with 100 ”M serotonin (p<0.001). The platelet serotonin receptor antagonist ketanserin decreased ADP-induced aggregation significantly in clopidogrel low-responders (from 59.9±3.1% to 37.4±3.5, p<0.01), but not in clopidogrel responders. These results were confirmed with light transmission aggregometry in platelet-rich plasma in a subset of patients. Serotonin hence increased residual platelet reactivity in patients who respond to clopidogrel after coronary stent placement. In clopidogrel low-responders, serotonin receptor antagonism improved platelet inhibition, almost reaching responder levels. This may justify further investigation of triple antiplatelet therapy with anti-serotonergic agents

    Serotonin transporter-deficient mice display enhanced adipose tissue inflammation after chronic high-fat diet feeding.

    Get PDF
    INTRODUCTION Serotonin is involved in leukocyte recruitment during inflammation. Deficiency of the serotonin transporter (SERT) is associated with metabolic changes in humans and mice. A possible link and interaction between the inflammatory effects of serotonin and metabolic derangements in SERT-deficient mice has not been investigated so far. METHODS SERT-deficient (Sert -/-) and wild type (WT) mice were fed a high-fat diet, starting at 8 weeks of age. Metabolic phenotyping (metabolic caging, glucose and insulin tolerance testing, body and organ weight measurements, qPCR, histology) and assessment of adipose tissue inflammation (flow cytometry, histology, qPCR) were carried out at the end of the 19-week high-fat diet feeding period. In parallel, Sert -/- and WT mice received a control diet and were analyzed either at the time point equivalent to high-fat diet feeding or as early as 8-11 weeks of age for baseline characterization. RESULTS After 19 weeks of high-fat diet, Sert -/- and WT mice displayed similar whole-body and fat pad weights despite increased relative weight gain due to lower starting body weight in Sert -/-. In obese Sert -/- animals insulin resistance and liver steatosis were enhanced as compared to WT animals. Leukocyte accumulation and mRNA expression of cytokine signaling mediators were increased in epididymal adipose tissue of obese Sert -/- mice. These effects were associated with higher adipose tissue mRNA expression of the chemokine monocyte chemoattractant protein 1 and presence of monocytosis in blood with an increased proportion of pro-inflammatory Ly6C+ monocytes. By contrast, Sert -/- mice fed a control diet did not display adipose tissue inflammation. DISCUSSION Our observations suggest that SERT deficiency in mice is associated with inflammatory processes that manifest as increased adipose tissue inflammation upon chronic high-fat diet feeding due to enhanced leukocyte recruitment

    Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macriphages

    Get PDF
    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Wolf, Dennis. University Of Freiburg; AlemaniaFil: Anto Michel, Nathaly. University Of Freiburg; AlemaniaFil: Mauler, Maximilian. University Of Freiburg; AlemaniaFil: Dufner, Bianca. University Of Freiburg; AlemaniaFil: Hoppe, Natalie. University Of Freiburg; AlemaniaFil: Beckert, Jessica. University Of Freiburg; AlemaniaFil: JÀekel, Markus. University Of Freiburg; AlemaniaFil: Magnani, Natalia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Duerschmied, Daniel. University Of Freiburg; AlemaniaFil: Tasat, Deborah Ruth. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro de Estudios en Salud y Medio Ambiente; ArgentinaFil: Alvarez, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Reinöhl, Jochen. University Of Freiburg; AlemaniaFil: von zur Muhlen, Constantin. University Of Freiburg; AlemaniaFil: Idzko, Marco. University Of Freiburg; AlemaniaFil: Bode, Christoph. University Of Freiburg; AlemaniaFil: Hilgendorf, Ingo. University Of Freiburg; AlemaniaFil: Evelson, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Zirlik, Andreas. University Of Freiburg; Alemani

    Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium

    Get PDF
    © Springer Nature Limited 2022. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1038/s41569-021-00665-7Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and d-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.Peer reviewe

    Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation

    Get PDF
    Background: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. Methods: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. Results: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition - reported to protect patients with depression from cardiovascular events - resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. Conclusions: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.Fil: Mauler, Maximilian. No especifíca;Fil: Herr, Nadine. No especifíca;Fil: Schoenichen, Claudia. No especifíca;Fil: Witsch, Thilo. No especifíca;Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: HÀrdtner, Carmen. No especifíca;Fil: Koentges, Christoph. No especifíca;Fil: Kienle, Korbinian. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ollivier, Véronique. Inserm; FranciaFil: Schell, Maximilian. No especifíca;Fil: Dorner, Ludwig. No especifíca;Fil: Wippel, Christopher. No especifíca;Fil: Stallmann, Daniela. No especifíca;Fil: Normann, Claus. No especifíca;Fil: Bugger, Heiko. No especifíca;Fil: Walther, Paul. Universitat Ulm; AlemaniaFil: Wolf, Dennis. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Ahrens, Ingo. No especifíca;Fil: LÀmmermann, Tim. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ho-Tin-Noé, Benoßt. Inserm; FranciaFil: Ley, Klaus. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bode, Christoph. No especifíca;Fil: Hilgendorf, Ingo. No especifíca;Fil: Duerschmied, Daniel. No especifíca

    Enoxaparin for outpatients with COVID-19: 90-day results from the randomised, open-label, parallel-group, multinational, phase III OVID trial

    Full text link
    INTRODUCTION The benefits of early thromboprophylaxis in symptomatic COVID-19 outpatients remain unclear. We present the 90-day results from the randomised, open-label, parallel-group, investigator-initiated, multinational OVID phase III trial. METHODS Outpatients aged 50 years or older with acute symptomatic COVID-19 were randomised to receive enoxaparin 40 mg for 14 days once daily vs. standard of care (no thromboprophylaxis). The primary outcome was the composite of untoward hospitalisation and all-cause death within 30 days from randomisation. Secondary outcomes included arterial and venous major cardiovascular events, as well as the primary outcome within 90 days from randomisation. The study was prematurely terminated based on statistical criteria after the predefined interim analysis of 30-day data, which has been previously published. In the present analysis, we present the final, 90-day data from OVID and we additionally investigate the impact of thromboprophylaxis on the resolution of symptoms. RESULTS Of the 472 patients included in the intention-to-treat population, 234 were randomised to receive enoxaparin and 238 no thromboprophylaxis. The median age was 57 (Q1-Q3: 53-62) years and 217 (46 %) were women. The 90-day primary outcome occurred in 11 (4.7 %) patients of the enoxaparin arm and in 11 (4.6 %) controls (adjusted relative risk 1.00; 95 % CI: 0.44-2.25): 3 events per group occurred after day 30. The 90-day incidence of cardiovascular events was 0.9 % in the enoxaparin arm vs. 1.7 % in controls (relative risk 0.51; 95 % CI: 0.09-2.75). Individual symptoms improved progressively within 90 days with no difference between groups. At 90 days, 42 (17.9 %) patients in the enoxaparin arm and 40 (16.8 %) controls had persistent respiratory symptoms. CONCLUSIONS In adult community patients with COVID-19, early thromboprophylaxis with enoxaparin did not improve the course of COVID-19 neither in terms of hospitalisation and death nor considering COVID-19-related symptoms
    • 

    corecore