223 research outputs found

    Virtual Reality to Stimulate Cognitive Behavior of Alzheimer's and Dementia Patients

    Get PDF
    Seniority and Alzheimer’s and dementia’s diseases lead to progressive cognitive impairment. The exploitation of Virtual Reality is investigated to test innovative entertainment and therapeutic activities that can provide new stimuli and interests for patients. The game approach activates mechanisms able to train memory and energize the mind through visuospatial and sound inputs. A full-immersive application has been developed to allow the patient to perform this kind of experience at home for daily training, becoming short therapeutic cycles, thanks to the affordability, the transportability and the flexibility of the infrastructure put in place. The cognitive path foresees successive levels of interaction, alternating relaxing and inspiring settings and exercises. It can improve the quality of life by learning to manage and monitor actions and feelings. In this way, these kind of experience can generate positive benefits not only for those who show fragility, but also for their families in addition to a tool to support health workers for diagnostics and training

    A multielement probe for coincident temperature and pressure measurements

    Get PDF
    Small, multielement probes are described which measure total pressure and temperature coincidentally at one or several points in gas stream

    Power spectra of TASEPs with a localized slow site

    Full text link
    The totally asymmetric simple exclusion process (TASEP) with a localized defect is revisited in this article with attention paid to the power spectra of the particle occupancy N(t). Intrigued by the oscillatory behaviors in the power spectra of an ordinary TASEP in high/low density phase(HD/LD) observed by Adams et al. (2007 Phys. Rev. Lett. 99 020601), we introduce a single slow site with hopping rate q<1 to the system. As the power spectrum contains time-correlation information of the particle occupancy of the system, we are particularly interested in how the defect affects fluctuation in particle number of the left and right subsystems as well as that of the entire system. Exploiting Monte Carlo simulations, we observe the disappearance of oscillations when the defect is located at the center of the system. When the defect is off center, oscillations are restored. To explore the origin of such phenomenon, we use a linearized Langevin equation to calculate the power spectrum for the sublattices and the whole lattice. We provide insights into the interactions between the sublattices coupled through the defect site for both simulation and analytical results.Comment: 16 pages, 6 figures; v2: Minor revision

    Competition for finite resources

    Full text link
    The resources in a cell are finite, which implies that the various components of the cell must compete for resources. One such resource is the ribosomes used during translation to create proteins. Motivated by this example, we explore this competition by connecting two totally asymmetric simple exclusion processes (TASEPs) to a finite pool of particles. Expanding on our previous work, we focus on the effects on the density and current of having different entry and exit rates.Comment: 15 pages, 9 figures, v2: minor revisions, v3: additional reference & minor correction

    Design and Analysis of a Deep Drawing and Inprocess Electromagnetic Sheet Metal Forming Process

    Get PDF
    The design as well as the subsequent analysis of a deep drawing and in-process electromagnetic sheet metal forming calibration will be described in this paper. Due to the quite different forming processes concerning the occurred strain rates, an investigation on the microstructure of the formed workpieces will be pointed out. Furthermore, the design steps regarding the integrated tool coil will be presented and the resulting examples discussed. Finally, the setup of the integrated process as well as the feasibility will be shown on an exemplary semi-industrial workpiece

    Dynamics of an exclusion process with creation and annihilation

    Full text link
    We examine the dynamical properties of an exclusion process with creation and annihilation of particles in the framework of a phenomenological domain-wall theory, by scaling arguments and by numerical simulation. We find that the length- and time scale are finite in the maximum current phase for finite creation- and annihilation rates as opposed to the algebraically decaying correlations of the totally asymmetric simple exclusion process (TASEP). Critical exponents of the transition to the TASEP are determined. The case where bulk creation- and annihilation rates vanish faster than the inverse of the system size N is also analyzed. We point out that shock localization is possible even for rates proportional to 1/N^a, 1<a<2.Comment: 16 pages, 8 figures, typos corrected, references added, section 4 revise

    Feedback and Fluctuations in a Totally Asymmetric Simple Exclusion Process with Finite Resources

    Full text link
    We revisit a totally asymmetric simple exclusion process (TASEP) with open boundaries and a global constraint on the total number of particles [Adams, et. al. 2008 J. Stat. Mech. P06009]. In this model, the entry rate of particles into the lattice depends on the number available in the reservoir. Thus, the total occupation on the lattice feeds back into its filling process. Although a simple domain wall theory provided reasonably good predictions for Monte Carlo simulation results for certain quantities, it did not account for the fluctuations of this feedback. We generalize the previous study and find dramatically improved predictions for, e.g., the density profile on the lattice and provide a better understanding of the phenomenon of "shock localization."Comment: 11 pages, 3 figures, v2: Minor change

    Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process

    Full text link
    To synthesize proteins in a cell, an mRNA has to work with a finite pool of ribosomes. When this constraint is included in the modeling by a totally asymmetric simple exclusion process (TASEP), non-trivial consequences emerge. Here, we consider its effects on the power spectrum of the total occupancy, through Monte Carlo simulations and analytical methods. New features, such as dramatic suppressions at low frequencies, are discovered. We formulate a theory based on a linearized Langevin equation with discrete space and time. The good agreement between its predictions and simulation results provides some insight into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change

    Dynamical Transition in the Open-boundary Totally Asymmetric Exclusion Process

    Full text link
    We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincides neither with any change in the steady-state properties of the TASEP, nor the corresponding line predicted by domain wall theory. We provide numerical evidence that the TASEP indeed has a dynamical transition along the de Gier-Essler line, finding that the most convincing evidence was obtained from Density Matrix Renormalisation Group (DMRG) calculations. By contrast, we find that the dynamical transition is rather hard to see in direct Monte Carlo simulations of the TASEP. We furthermore discuss in general terms scenarios that admit a distinction between static and dynamic phase behaviour.Comment: 27 pages, 18 figures. v2 to appear in J Phys A features minor corrections and better-quality figure

    Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries

    Full text link
    We analyze the Bethe ansatz equations describing the complete spectrum of the transition matrix of the partially asymmetric exclusion process on a finite lattice and with the most general open boundary conditions. We extend results obtained recently for totally asymmetric diffusion [J. de Gier and F.H.L. Essler, J. Stat. Mech. P12011 (2006)] to the case of partial symmetry. We determine the finite-size scaling of the spectral gap, which characterizes the approach to stationarity at large times, in the low and high density regimes and on the coexistence line. We observe boundary induced crossovers and discuss possible interpretations of our results in terms of effective domain wall theories.Comment: 30 pages, 9 figures, typeset for pdflatex; revised versio
    • …
    corecore