7 research outputs found

    Rediscovery of Glauconycteris superba Hayman, 1939 (Chiroptera: Vespertilionidae) after 40 years at Mbiye Island, Democratic Republic of the Congo

    Get PDF
    We report the rediscovery of the Pied Butterfl y Bat, Glauconycteris superba Hayman, 1939, 40 years after this species was last recorded. The new specimen from Mbiye Island, Democratic Republic of the Congo, is compared with the type specimens of G. s. superba and G. superba sheila Hayman, 1947 and a specimen from MatonguinĂ©, Ivory Coast. The variation in the striking colouration of the pelage as well as in morphometric data is considered to be individual rather than geographic variation and we tentatively regard G. s. sheila as a synonym of the nominate form. Despite the wide distribution of this species in the tropical forest zone of West and Central Africa, only four specimens from four localities are known to date, which might indicate very specific habitat preferences. Contemporary land cover information around historic collection sites shows degraded landscapes. Given the highly uncertain area of occupancy of this species, we suggest changing the status of G. superba in the IUCN Red List of Threatened Species from “Least Concern” to “Data Defi cient”

    New distributional data and genetic variation of Panaspis breviceps (Squamata: Scincidae) indicate a biogeographic connection across the Congo Basin

    No full text
    In the central Congolian lowland forests we discovered for the first time Panaspis breviceps, a rarely found scincid lizard from the Central African riparian forests. Given that the Central African forests exhibit heterogeneity in the distribution of environmental characteristics and forms distinct ecoregions, the question arises as to how this newly discovered population compares with other populations in Central Africa and particularly in the Congolian lowland forests. We reviewed the distribution records of this species and examined and compared new and available genetic data (mitochondrial DNA). Maximum likelihood phylogenetic analysis revealed the existence of two evolutionary lineages differing by 2.0% in 16S rRNA. One lineage occurs in and around the southern Cameroon Highlands, but its distribution southwards is poorly documented. The other lineage includes the western, central and eastern populations of the Congo Basin, suggesting certain biogeographic connectivity across the Congolian forests. These results support the hypothesis of limited biogeographic barriers to the distribution of lizards in the Congolian lowland forests, but this remains to be tested using additional independent markers, denser sampling and multiple species

    Historical biogeography, systematics, and integrative taxonomy of the non-Ethiopian speckled pelage brush-furred rats (Lophuromys flavopunctatus group)

    No full text
    Abstract Background The speckled-pelage brush-furred rats (Lophuromys flavopunctatus group) have been difficult to define given conflicting genetic, morphological, and distributional records that combine to obscure meaningful accounts of its taxonomic diversity and evolution. In this study, we inferred the systematics, phylogeography, and evolutionary history of the L. flavopunctatus group using maximum likelihood and Bayesian phylogenetic inference, divergence times, historical biogeographic reconstruction, and morphometric discriminant tests. We compiled comprehensive datasets of three loci (two mitochondrial [mtDNA] and one nuclear) and two morphometric datasets (linear and geometric) from across the known range of the genus Lophuromys. Results The mtDNA phylogeny supported the division of the genus Lophuromys into three primary groups with nearly equidistant pairwise differentiation: one group corresponding to the subgenus Kivumys (Kivumys group) and two groups corresponding to the subgenus Lophuromys (L. sikapusi group and L. flavopunctatus group). The L. flavopunctatus group comprised the speckled-pelage brush-furred Lophuromys endemic to Ethiopia (Ethiopian L. flavopunctatus members [ETHFLAVO]) and the non-Ethiopian ones (non-Ethiopian L. flavopunctatus members [NONETHFLAVO]) in deeply nested relationships. There were distinctly geographically structured mtDNA clades among the NONETHFLAVO, which were incongruous with the nuclear tree where several clades were unresolved. The morphometric datasets did not systematically assign samples to meaningful taxonomic units or agree with the mtDNA clades. The divergence dating and ancestral range reconstructions showed the NONETHFLAVO colonized the current ranges over two independent dispersal events out of Ethiopia in the early Pleistocene. Conclusion The phylogenetic associations and divergence times of the L. flavopunctatus group support the hypothesis that paleoclimatic impacts and ecosystem refugia during the Pleistocene impacted the evolutionary radiation of these rodents. The overlap in craniodental variation between distinct mtDNA clades among the NONETHFLAVO suggests unraveling underlying ecomorphological drivers is key to reconciling taxonomically informative morphological characters. The genus Lophuromys requires a taxonomic reassessment based on extensive genomic evidence to elucidate the patterns and impacts of genetic isolation at clade contact zones

    A new hero emerges: another exceptional mammalian spine and its potential adaptive significance

    No full text
    The hero shrew's (Scutisorex somereni) massive interlocking lumbar vertebrae represent the most extreme modification of the vertebral column known in mammals. No intermediate form of this remarkable morphology is known, nor is there any convincing theory to explain its functional significance. We document a new species in the heretofore monotypic genus Scutisorex; the new species possesses cranial and vertebral features representing intermediate character states between S. somereni and other shrews. Phylogenetic analyses of DNA sequences support a sister relationship between the new species and S. somereni. While the function of the unusual spine in Scutisorex is unknown, it gives these small animals incredible vertebral strength. Based on field observations, we hypothesize that the unique vertebral column is an adaptation allowing these shrews to lever heavy or compressive objects to access concentrated food resources inaccessible to other animals
    corecore