73 research outputs found

    Trends of CO2, CH4 and N2O over 1985-2010 from high-resolution FTIR solar observations at the Jungfraujoch station

    Full text link
    Two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers are operated at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580m asl) within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The earliest FTIR observations have been obtained there in 1984. Since then, regular recordings of high-resolution solar absorption spectra have been performed at that site, under clear-sky conditions, allowing to collect almost 29000 observations relevant to the present communication. We present time series of three greenhouse gases targeted by the Kyoto Protocol: CO2, CH4 (and its isotopologue 13CH4) and N2O. These data sets have been obtained with the SFIT-2 algorithm which implements the Optimal Estimation Method of Rodgers (1990). This allows retrieving total columns of the target gases as well as information on their distribution with altitude. For the methane isotopologues and N2O, a Tikhonov L1 regularization scheme has been applied, as part of an harmonization effort carried out within the European HYMN project (see also Dils et al, 2010; Foster et al., 2010). Trends –and their associated uncertainties– characterizing these long series as well as the seasonal modulations have been determined with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trend values will be presented and critically discussed; in particular, we will investigate if significant changes in the rate of accumulations of these four atmospheric gases occurred over the last 25 years. Numerous additional greenhouse gases are accessible to the FTIR technique. Examples of such trend studies are reported at the EGU General Assembly by Mahieu et al. (2010) and Rinsland et al. (2010)

    Optimized approach to retrieve information on the tropospheric and stratospheric carbonyl sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra

    Full text link
    Carbonyl sulfide (OCS), which is produced in the troposphere from both biogenic and anthropogenic sources, is the most abundant gaseous sulfur species in the unpolluted atmosphere. Due to its low chemical reactivity and water solubility, a significant fraction of OCS is able to reach the stratosphere where it is converted to SO2 and ultimately to H2SO4 aerosols (Junge layer). These aerosols have the potential to amplify stratospheric ozone destruction on a global scale and may influence Earth’s radiation budget and climate through increasing solar scattering. The transport of OCS from troposphere to stratosphere is thought to be the primary mechanism by which the Junge layer is sustained during nonvolcanic periods. Because of this, long-term trends in atmospheric OCS concentration, not only in the troposphere but also in the stratosphere, are of great interest. A new approach has been developed and optimized to retrieve atmospheric abundance of OCS from high-resolution ground-based infrared solar spectra by using the SFIT-2 (v3.91) algorithm, including a new model for solar lines simulation (solar lines often produce significant interferences in the OCS microwindows). The strongest lines of the nu3 fundamental band of OCS at 2062 cm-1 have been systematically evaluated with objective criteria to select a new set of microwindows, assuming the HITRAN 2004 spectroscopic parameters with an increase in the OCS line intensities of the nu3band main isotopologue 16O12C32S by 15.79% as compared to HITRAN 2000 (Rothman et al., 2008, and references therein). Two regularization schemes have further been compared (deducted from ATMOS and ACE-FTS measurements or based on a Tikhonov approach), in order to select the one which optimizes the information content while minimizing the error budget. The selected approach has allowed us to determine updated OCS long-term trend from 1988 to 2009 in both the troposphere and the stratosphere, using spectra recorded on a regular basis with Fourier Transform Infrared spectrometers (FTIRs), under clear-sky conditions, at the NDACC site (Network for the Detection of Atmospheric Composition Change, visit http://www.ndacc.org) of the International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0°E, 3580m asl). Trends and seasonal cycles deduced from our results will be compared to values published in the literature and critically discussed. In particular, we will confirm the recent change in the OCS total column trend, which has become positive since 2002 before undergoing a slowing down over the last years

    Advanced exploitation of Ground-Based measurements for Atmospheric Chemistry and Climate Applications "AGACC"

    Full text link
    We live in an era in which human activities are causing significant changes to the atmospheric environment which result in local to global consequences on the ecosystems. Changes in the atmospheric composition impact our climate via chemical and dynamical feedback mechanisms; in many instances they also affect air quality, and the health of the biosphere. Monitoring and understanding those changes and their consequences is fundamental to establish adequate actions for adaptation to and mitigation of the environmental changes. Furthermore, after implementation of regulatory measures like the Montreal Protocol, it is necessary to verify whether the measures are effective. This can only be achieved if we have adequate detection methods and a reliable long record of a series of key geophysical parameters. Thus the AGACC project contributes to the provision of basic new knowledge regarding the atmospheric composition and its changes, based on advanced groundbased monitoring, in combination with satellite and numerical modelling data. Its results are integrated in ongoing international research programmes. The general objective of AGACC has been to improve and extend the groundbased detection capabilities for a number of climate-related target species and, based hereupon, analyse past and present observations to derive new information about the atmospheric composition, its variability and long-term changes. Despite the advent of a growing and more performant fleet of Earth Observation satellites, ground-based observations are still indispensable to (1) guarantee long-term continuity, homogeneity and high quality of the data, and (2) to underpin the satellite data for calibration and (long-term) validation. A first target gas is atmospheric water vapour. It is the key trace gas controlling weather and climate. It is also the most important greenhouse gas in the Earth’s atmosphere. Its amount and vertical distribution are changing, but how and why? Especially in the upper troposphere - lower stratosphere, the radiative effects of changes in the water vapour are significant and should be quantified. The measurement of water vapour is a hot topic since several years. It is a challenge, because water vapour exhibits a large gradient in its concentration when going from the ground to the stratosphere, and because it is highly variable in time and space. For example, we have found that the time scale of the variations of the total water vapour amount at Jungfraujoch is in the order of minutes. In AGACC, we have therefore investigated various experimental techniques to measure the concentration of water vapour in the atmosphere, focusing on the total column as well as on the vertical distribution in the troposphere up to the lower stratosphere. The retrieval of water vapour vertical profiles and total columns from ground-based FTIR data has been initiated at three very different stations where correlative data for verification are available, namely Ukkel (± sea level, mid-latitude), Ile de La Réunion (± sea level, tropical) and Jungfraujoch (high altitude, mid-latitude), with promising results. In particular, at Jungfraujoch, it has been demonstrated that the precision of the FTIR integrated water vapour (IWV) measurements is of order 2%. The capability to retrieve individual isotopologues of water vapour, and to monitor their daily and diurnal variations, has also been demonstrated. This could open new ways to study in the future the role of water vapour in the radiative balance, the global circulation, precipitation etc. We also started joint exploitation of ground-based FTIR and satellite IASI data for water vapour and its isotopologues, in order to exploit fully the potential of the existing instrumentation. A correction method for the radiosoundings at Ukkel has been successfully implemented, resulting in a homogeneous and reliable time series from 1990 to 2008 from which trends in upper troposphere humidity (UTH) and tropopause characteristics have been derived. One observes a rising UTH until September 2001, followed by a decline, accompanied by a descent and heating of the tropopause up to the turning point and an ascent and cooling afterwards. The changes after September 2001 in the upper troposphere can be explained by surface heating and convective uplift. At Jungfraujoch, one does not observe any significant trend in the total water vapour abundance above the station over the 1988-2010 time period, although significant positive summer and negative winter trends have been detected. We have made a quantitative statistical comparison between ground-based FTIR, CIMEL, GPS and integrated (corrected) radio sounding measurements of the IWV at Ukkel. This work is important to better characterize the different sensors in order to exploit together different observations made by different instruments. A second target species is atmospheric aerosol. There is a very large variety of aerosol both from natural or anthropogenic origin. One of the reasons why they are so important is that they affect the optical properties of the atmosphere. In particular, it has been demonstrated in previous studies that the aerosols have a large impact on the quantity of harmful UV-B radiation received at the Earth’s surface. The latest IPCC Report also stressed that the radiative forcing caused by atmospheric aerosols is one of the largest uncertainties in determining the total radiative forcing in the atmosphere. Better monitoring capabilities of aerosol properties can therefore improve our understanding and forecasting of the atmospheric processes and evolution, and in particular of UV-B and climate changes. Several measurement techniques are now operational in the AGACC consortium for the ground-based monitoring of aerosol properties. These are the Brewer spectrometer and CIMEL observations at Ukkel, the latter contributing also to the AERONET network since July 2006, and the newly developed MAXDOAS observations. Unlike CIMEL and Brewer measurements, that provide the total Aerosol Optical Depth, it has been demonstrated that the MAXDOAS measurements also provide additional information about the vertical distribution of the aerosol extinction in the lowest kilometres of the troposphere. A better understanding of the ultimate capabilities of MAXDOAS aerosol remote sensing has been gained through participation to the international CINDI campaign (Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments ) in summer 2009. The combination of Brewer, CIMEL and MAXDOAS instruments gives us a remote-sensing dataset that will enable a more comprehensive characterization of the tropospheric aerosol optical properties. The usefulness of these aerosol observations has already been demonstrated in the improvement of the UVindex predictions for the general public. Another application is their use as input data in the retrieval of vertical profiles of tropospheric pollutants from MAXDOAS measurements, like tropospheric NO2 and formaldehyde. Third we have focused on a few climate-related trace gases. Changing greenhouse gas and aerosol concentrations directly affect the radiative budget of the atmosphere, and therefore climate. But many species known as pollutants like carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons, - often related to fossil fuel or biomass burning -, also affect climate through their role in chemical reactions that produce tropospheric ozone, which is a well-known greenhouse gas, or that modify the lifetime of gases like methane, or the oxidation capacity of the atmosphere. Therefore in AGACC, we have focused on the measurement of a number of trace gases that are subject to changing concentrations, that directly or indirectly affect climate, and that are either difficult to monitor or that have not yet been measured from the ground. We have included attempts to observe distinctly some isotopologues, because the isotopic ratios observed in an airmass provide information on its history, and because the FTIR solar absorption measurements provide a rather unique capability hereto. The investigated species are the isotopologues of CH4 and CO, and hydrogen cyanide (HCN), as examples of biomass burning tracers, some hydrocarbons like formaldehyde (HCHO), ethylene (C2H4) and acetylene (C2H2), and HCFC-142b, a replacement product for CFCs and a greenhouse gas. In many cases, retrieval strategies had to be adapted when going from one site to another with different atmospheric conditions, especially when the local humidity and abundances are very different as is the case between Jungfraujoch (dry, high altitude, mid-latitude) and Ile de La Réunion (humid, low altitude, low latitude). Still we have been able to show the feasibility of retrieving particular trace gas information even under difficult conditions. Many of our results have been compared to correlative data, to validate the approach and to gain complementary information. It is also important to note that the retrieval strategies developed in AGACC have regularly been presented to the global Network for the Detection of Atmospheric Composition Change (NDACC) UV-Vis and Infrared communities and have often been adopted by others or even proposed for adoption as a standard in the community (e.g., for hydrogen cyanide (HCN)). In particular: We have been able to study the seasonal variations of HCN at the Jungfraujoch and at Ile de La Réunion, and to show the dominant impact of biomass burning. Formaldehyde was studied in much detail at Ukkel, Jungfraujoch and Ile de la Réunion. The challenge for detection at Jungfraujoch is the small abundance (about 10 times smaller than at Ukkel and Ile de La Réunion); a particular observation strategy was developed successfully, resulting in a time series that already shows the day-to-day and seasonal variations. At Ile de La Réunion, comparisons of FTIR, MAXDOAS, satellite and model data have (1) shown the good agreement between the various data sets, but also, (2), the variability of HCHO (diurnal, seasonal, day-to-day), and (3), thanks to the complementarities of the various data sets, they have enabled us to learn more about the long-range transport of Non-methane Volatile Organic Compounds (NMVOCS, precursors of HCHO) and deficiencies in the models. It was shown that fast, direct transport of NMVOCS from Madagascar has a significant impact on the HCHO abundance and its variability at Ile de La Réunion, and that this is underestimated in the model. Significant progress was made as to the detection of 13CH4 and CH3D from ground-based FTIR observations, both at Jungfraujoch and Ile de La Réunion. To our knowledge, it is the first time that a d13C data set is derived from ground-based FTIR observations. More work is needed to improve the CH3D retrieval at Ile de La Réunion, and to interpret the results, in combination with models. Also for the first time, 12CO and 13CO have been retrieved individually at Jungfraujoch. The d13C time series shows significant seasonal and interannual changes. As to the hydrocarbon ethylene, it is shown that it can be detected at Jungfraujoch only in spectra at low solar elevation, given its small atmospheric abundance. Regarding acetylene, the observed time series at Jungfraujoch and Ile de La Réunion show clear seasonal variations and enhancements due to the impact of biomass burning events, correlated with enhancements in CO, C2H6 and HCN. It is not clear yet whether we can reliably retrieve the concentration of HCFC- 142b, a replacement product that is increasing strongly in the troposphere. New line parameters for the interfering species HFC-134a are required to confirm/infirm the preliminary results. This highlights again the importance of the laboratory work for providing such parameters. Improved line parameters have been obtained for water vapour and its isotopologues, ethylene and formic acid. These AGACC results have been integrated in the international spectroscopic databases. We also showed that line intensities available around 2096 cm–1 for the 13C16O isotopologue of carbon monoxide in the HITRAN database seem to be accurate to 2%. We failed to improve line intensities for the 13.6 μm region of acetylene. The new data sets that have been derived in AGACC from FTIR and MAXDOAS observations have been archived in the NDACC data centre, where they are available for users (generally modelers and satellite teams). In addition, they are stored locally and are available to users upon request. AGACC results have been reported to the international scientific community, via the literature, via integration in geophysical or spectroscopic databases, and via participation to international research initiatives like the Atmospheric Water Vapour in the Climate System (WAVACS) Cost Action, the International Space Science Institute (ISSI) Working Group on Atmospheric Water Vapour, the International Union of Pure and Applied Chemistry (IUPAC) project, the International CINDI campaign, etc. The results have already found important scientific applications. A few examples are worth mentioning: the re-evaluation of methane emissions in the tropics from SCIAMACHY based on the new H2O spectroscopy, and the improved retrievals of HCOOH from the satellite experiments ACE-FTS and IASI, and from the ground. In the longer-term, the AGACC results will no doubt benefit the research in atmospheric sciences –in particular in the monitoring of its composition changes–, which is the fundamental basis of environmental assessment reports for supporting policy makers.Advanced exploitation of ground-based measurements for atmospheric chemistry and climate applications "AGACC

    Changes in atmospheric composition discerned from long-term NDACC measurements: trends in direct greenhouse gases derived from infrared solar absorption spectra recorded at the Jungfraujoch station

    Full text link
    The University of Liège (ULg) is operating -under clear sky conditions- two state-of-the-art Fourier Transform Infrared (FTIR) spectrometers at the high-altitude research station of the Jungfraujoch (Swiss Alps, 46.5ºN, 3580m asl), within the framework of the Network for the Detection of Atmospheric Composition Changes (NDACC). Routine FTIR operation started in 1984. Since then, it has been continued without disruption, allowing collecting more than 45000 high-resolution broadband IR solar absorption spectra, between 2 and 16 µm, using either HgCdTe or InSb detectors as well as a suite of optical filters. Typically, the spectral resolutions achieved lie in the 0.003 to 0.009 cm-1 interval while signal-to-noise ratios of 1000 and more are reached. Numerous narrow-band IR spectra essentially recorded from 1976 to 1989 with grating instruments are also available. Their analyses with modern tools have recently started [Bader et al., 2011] and will be pursued to consistently extend our datasets back in the 1970s. Geophysical parameters are deduced from the ULg observational database either with the SFIT-1, SFIT-2 or PROFFIT-9 algorithm, allowing producing total column time series of the target gases. In addition, information on their vertical distributions with altitude can generally be derived when using SFIT-2 or PROFFIT-9 which both implement the Optimal Estimation Method of Rodgers [1990]. Presently, more than two dozen atmospheric species are systematically retrieved from the Jungfraujoch observations, allowing the monitoring of key constituents of the Earth's atmosphere which play important roles in stratospheric ozone depletion and/or in global warming. This communication will focus on the direct and major greenhouse gases available from our database, namely water vapor, CO2, CH4, N2O, tropospheric ozone, CFC-11, CFC-12, HCFC-22, CCl4, SF6, as well as CF4 which has recently been added to our targets list [Duchatelet et al., 2011]. Trends and associated uncertainties characterizing the available -and often multi-decadal- time series have been derived or updated with a statistical bootstrap resampling tool [Gardiner et al., 2008], they will be presented and critically compared with data available from the literature

    Ground-based FTIR measurements of O3- and climate-related gases in the free troposphere and lower stratosphere

    Full text link
    In the frame of the EC project UFTIR (Time series of Upper Free Troposphere observations from a European ground-based FTIR network), a common strategy for an optimal determination of the chemical composition in the free troposphere and lower stratosphere with ground-based Fourier-transform infrared (FTIR) spectrometers is being developed. The project focuses on 6 target species that are O3, CO, CH4, N2O, C2H6 and CHClF2 (HCFC-22). The strategy consists in selecting the most appropriate parameters to retrieve vertical concentration profiles from solar FTIR spectra. Among the important parameters are the spectral microwindows: they have been optimised to maximise the information content and to minimize the influence of poorly known spectroscopic data and interfering species

    Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Full text link
    The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements

    Advanced exploitation of ground-based Fourier transform infrared observations for tropospheric studies over Europe: achievements of the UFTIR project

    Full text link
    Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including information about their vertical distributions in the troposphere and the stratosphere. Such observations have regularly been made since many years as a contribution to the NDSC (Network for the Detection of Stratospheric Change). They are the only ground-based remote sensing observations available nowadays that carry information about key atmospheric trace species in the free troposphere, among which the most important greenhouse gases. The European UFTIR project (Time series of Upper Free Troposphere observations from a European ground-based FTIR network, http://www.nilu.no/uftir) has focused on maximizing the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3,HCFC-22, and CO and C2H6, respectively). The UFTIR network includes six NDSC stations in Western Europe, covering the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances of the abovementioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric and total burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series have been made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model, and in particular, to optimize emission estimates that are used as inputs to the model simulations, and to explain the observed trends. The final results of the project will be presented, and ways to proceed will be discussed
    • …
    corecore