26 research outputs found

    Synchronization from Second Order Network Connectivity Statistics

    Get PDF
    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates

    Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory

    Full text link
    Prefrontal persistent activity during the delay of spatial working memory tasks is thought to maintain spatial location in memory. A 'bump attractor' computational model can account for this physiology and its relationship to behavior. However, direct experimental evidence linking parameters of prefrontal firing to the memory report in individual trials is lacking, and, to date, no demonstration exists that bump attractor dynamics underlies spatial working memory. We analyzed monkey data and found model-derived predictive relationships between the variability of prefrontal activity in the delay and the fine details of recalled spatial location, as evident in trial-to-trial imprecise oculomotor responses. Our results support a diffusing bump representation for spatial working memory instantiated in persistent prefrontal activity. These findings reinforce persistent activity as a basis for spatial working memory, provide evidence for a continuous prefrontal representation of memorized space and offer experimental support for bump attractor dynamics mediating cognitive tasks in the cortex

    Reconstructing stimulus-driven neural networks from spike times

    No full text
    We present a method to distinguish direct connections between two neurons from common input originating from other, unmeasured neurons. The distinction is computed from the spike times of the two neurons in response to a white noise stimulus. Although the method is based on a highly idealized linear-nonlinear approximation of neural response, we demonstrate via simulation that the approach can work with a more realistic, integrate-and-fire neuron model. We propose that the approach exemplified by this analysis may yield viable tools for reconstructing stimulus-driven neural networks from data gathered in neurophysiology experiments.
    corecore