4,132 research outputs found

    EviPlant: An efficient digital forensic challenge creation, manipulation and distribution solution

    Full text link
    Education and training in digital forensics requires a variety of suitable challenge corpora containing realistic features including regular wear-and-tear, background noise, and the actual digital traces to be discovered during investigation. Typically, the creation of these challenges requires overly arduous effort on the part of the educator to ensure their viability. Once created, the challenge image needs to be stored and distributed to a class for practical training. This storage and distribution step requires significant time and resources and may not even be possible in an online/distance learning scenario due to the data sizes involved. As part of this paper, we introduce a more capable methodology and system as an alternative to current approaches. EviPlant is a system designed for the efficient creation, manipulation, storage and distribution of challenges for digital forensics education and training. The system relies on the initial distribution of base disk images, i.e., images containing solely base operating systems. In order to create challenges for students, educators can boot the base system, emulate the desired activity and perform a "diffing" of resultant image and the base image. This diffing process extracts the modified artefacts and associated metadata and stores them in an "evidence package". Evidence packages can be created for different personae, different wear-and-tear, different emulated crimes, etc., and multiple evidence packages can be distributed to students and integrated into the base images. A number of additional applications in digital forensic challenge creation for tool testing and validation, proficiency testing, and malware analysis are also discussed as a result of using EviPlant.Comment: Digital Forensic Research Workshop Europe 201

    Guessing a password over a wireless channel (on the effect of noise non-uniformity)

    Get PDF
    A string is sent over a noisy channel that erases some of its characters. Knowing the statistical properties of the string's source and which characters were erased, a listener that is equipped with an ability to test the veracity of a string, one string at a time, wishes to fill in the missing pieces. Here we characterize the influence of the stochastic properties of both the string's source and the noise on the channel on the distribution of the number of attempts required to identify the string, its guesswork. In particular, we establish that the average noise on the channel is not a determining factor for the average guesswork and illustrate simple settings where one recipient with, on average, a better channel than another recipient, has higher average guesswork. These results stand in contrast to those for the capacity of wiretap channels and suggest the use of techniques such as friendly jamming with pseudo-random sequences to exploit this guesswork behavior.Comment: Asilomar Conference on Signals, Systems & Computers, 201

    Analysis and Design of Launch Vehicle Flight Control Systems

    Get PDF
    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust

    Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security

    Get PDF
    We present information-theoretic definitions and results for analyzing symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained. We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-distortion theory. We start by presenting a new information-theoretic metric for security, called symbol secrecy, and derive associated fundamental bounds. We then introduce list-source codes (LSCs), which are a general framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve in order to recover a secret message. We provide explicit constructions of LSCs, and demonstrate that, when the source is uniformly distributed, the highest level of symbol secrecy for a fixed key length can be achieved through a construction based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion theory, we then show how symbol secrecy can be used to determine the probability that an eavesdropper correctly reconstructs functions of the original plaintext. We illustrate how these bounds can be applied to characterize security properties of symmetric-key encryption schemes, and, in particular, extend security claims based on symbol secrecy to a functional setting.Comment: Submitted to IEEE Transactions on Information Theor

    Lists that are smaller than their parts: A coding approach to tunable secrecy

    Get PDF
    We present a new information-theoretic definition and associated results, based on list decoding in a source coding setting. We begin by presenting list-source codes, which naturally map a key length (entropy) to list size. We then show that such codes can be analyzed in the context of a novel information-theoretic metric, \epsilon-symbol secrecy, that encompasses both the one-time pad and traditional rate-based asymptotic metrics, but, like most cryptographic constructs, can be applied in non-asymptotic settings. We derive fundamental bounds for \epsilon-symbol secrecy and demonstrate how these bounds can be achieved with MDS codes when the source is uniformly distributed. We discuss applications and implementation issues of our codes.Comment: Allerton 2012, 8 page
    corecore