3,359 research outputs found

    Heat flow and heat generation in greenstone belts

    Get PDF
    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows

    How participation in Covid‐19 mutual aid groups affects subjective well‐being and how political identity moderates these effects

    Get PDF
    Mutual aid groups have flourished during the Covid-19 pandemic. However, a major challenge is sustaining such groups, which tend to decline following the initial upsurge immediately after emergencies. The present study investigates one possible motivation for continued participation: the well-being benefits associated with psychological membership of groups, as suggested by the “social cure” approach. Interviews were conducted with 11 volunteers in a mutual aid group organized by ACORN, a community union and anti-poverty campaigning organization. Through qualitative analysis, we show that participation provided well-being in different ways: positive emotional experiences, increased engagement in life, improved social relationships, and greater sense of control. Participants also reported some negative emotional experiences. While all interviewees experienced benefits from participation, those who viewed their participation through a political lens were able to experience additional benefits such as feelings of empowerment. Moreover, the benefits conferred by a shared political identity appeared to be qualitatively different from the benefits conferred by other forms of shared identity. The interview data is used to hypothesize an overall process by which participants may come to attain a political identity via mutual aid. These findings have implications for how such groups retain their members and how authorities support these groups

    A current driven instability in parallel, relativistic shocks

    Full text link
    Recently, Bell has reanalysed the problem of wave excitation by cosmic rays propagating in the pre-cursor region of a supernova remnant shock front. He pointed out a strong, non-resonant, current-driven instability that had been overlooked in the kinetic treatments, and suggested that it is responsible for substantial amplification of the ambient magnetic field. Magnetic field amplification is also an important issue in the problem of the formation and structure of relativistic shock fronts, particularly in relation to models of gamma-ray bursts. We have therefore generalised the linear analysis to apply to this case, assuming a relativistic background plasma and a monoenergetic, unidirectional incoming proton beam. We find essentially the same non-resonant instability noticed by Bell, and show that also under GRB conditions, it grows much faster than the resonant waves. We quantify the extent to which thermal effects in the background plasma limit the maximum growth rate.Comment: 8 pages, 1 figur

    In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?

    Full text link
    We present a simple analytic model for the various contributions to the non-thermal emission from shell type SNRs, and show that this model's results reproduce well the results of previous detailed calculations. We show that the \geq 1 TeV gamma ray emission from the shell type SNRs RX J1713.7-3946 and RX J0852.0-4622 is dominated by inverse-Compton scattering of CMB photons (and possibly infra-red ambient photons) by accelerated electrons. Pion decay (due to proton-proton collisions) is shown to account for only a small fraction, \lesssim10^-2, of the observed flux, as assuming a larger fractional contribution would imply nonthermal radio and X-ray synchrotron emission and thermal X-ray Bremsstrahlung emission that far exceed the observed radio and X-ray fluxes. Models where pion decay dominates the \geq 1 TeV flux avoid the implied excessive synchrotron emission (but not the implied excessive thermal X-ray Bremsstrahlung emission) by assuming an extremely low efficiency of electron acceleration, K_ep \lesssim 10^-4 (K_ep is the ratio of the number of accelerated electrons and the number of accelerated protons at a given energy). We argue that observations of SNRs in nearby galaxies imply a lower limit of K_ep \gtrsim 10^-3, and thus rule out K_ep values \lesssim 10^-4 (assuming that SNRs share a common typical value of K_ep). It is suggested that SNRs with strong thermal X-ray emission, rather than strong non-thermal X-ray emission, are more suitable candidates for searches of gamma rays and neutrinos resulting from proton-proton collisions. In particular, it is shown that the neutrino flux from the SNRs above is probably too low to be detected by current and planned neutrino observatories (Abridged).Comment: 13 pages, 1 figure, accepted for publication in JCAP, minor revision

    Getting to know Pepper : Effects of people’s awareness of a robot’s capabilities on their trust in the robot

    Get PDF
    © 2018 Association for Computing MachineryThis work investigates how human awareness about a social robot’s capabilities is related to trusting this robot to handle different tasks. We present a user study that relates knowledge on different quality levels to participant’s ratings of trust. Secondary school pupils were asked to rate their trust in the robot after three types of exposures: a video demonstration, a live interaction, and a programming task. The study revealed that the pupils’ trust is positively affected across different domains after each session, indicating that human users trust a robot more the more awareness about the robot they have

    Морфологические изменения в нижнеальвеолярном нерве на экспериментальной модели его травмы разной степени тяжести

    Get PDF
    У роботі на 40 лабораторних щурах досліджено закономірності та патоморфологічні зміни у нижньоальвеолярному нерві й параневральных тканинах у різний термін після операції, що викликані різним ступенем дії травмуючого фактору.During the experiments on 40 laboratory rodents we have studied the regularities and pathomorphological changes in lower dental nerve and paraneural tissues induced by disturbing factor of varying influence intensity observed at different postoperative periods

    Modeling the power flow in normal conductor-insulator-superconductor junctions

    Get PDF
    Normal conductor-insulator-superconductor (NIS) junctions promise to be interesting for x-ray and phonon sensing applications, in particular due to the expected self-cooling of the N electrode by the tunneling current. Such cooling would enable the operation of the active element of the sensor below the cryostat temperature and at a correspondingly higher sensitivity. It would also allow the use of MS junctions as microcoolers. At present, this cooling has not been realized in large area junctions (suitable for a number of detector applications). In this article, we discuss a detailed modeling of the heat flow in such junctions; we show how the heat flow into the normal electrode by quasiparticle back-tunneling and phonon absorption from quasiparticle pair recombination can overcompensate the cooling power. This provides a microscopic explanation of the self-heating effects we observe in our large area NIS junctions. The model suggests a number of possible solutions

    Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity

    Get PDF
    Coherent variation in CaCO3 burial is a feature of the Cenozoic eastern equatorial Pacific. Nevertheless, there has been a long-standing ambiguity in whether changes in CaCO3 dissolution or changes in equatorial primary production might cause the variability. Since productivity and dissolution leave distinctive regional signals, a regional synthesis of data using updated age models and high-resolution stratigraphic correlation is an important constraint to distinguish between dissolution and production as factors that cause low CaCO3. Furthermore, the new chronostratigraphy is an important foundation for future paleoceanographic studies. The ability to distinguish between primary production and dissolution is also important to establish a regional carbonate compensation depth (CCD). We report late Miocene to Holocene time series of XRF-derived (X-ray fluorescence) bulk sediment composition and mass accumulation rates (MARs) from eastern equatorial Pacific Integrated Ocean Drilling Program (IODP) sites U1335, U1337, and U1338 and Ocean Drilling Program (ODP) site 849, and we also report bulk-density-derived CaCO3 MARs at ODP sites 848, 850, and 851. We use physical properties, XRF bulk chemical scans, and images along with available chronostratigraphy to intercorrelate records in depth space. We then apply a new equatorial Pacific age model to create correlated age records for the last 8 Myr with resolutions of 1–2 kyr. Large magnitude changes in CaCO3 and bio-SiO2 (biogenic opal) MARs occurred within that time period but clay deposition has remained relatively constant, indicating that changes in Fe deposition from dust is only a secondary feedback to equatorial productivity. Because clay deposition is relatively constant, ratios of CaCO3 % or biogenic SiO2 % to clay emulate changes in biogenic MAR. We define five major Pliocene–Pleistocene low CaCO3 % (PPLC) intervals since 5.3 Ma. Two were caused primarily by high bio-SiO2 burial that diluted CaCO3 (PPLC-2, 1685–2135 ka, and PPLC-5, 4465–4737 ka), while three were caused by enhanced dissolution of CaCO3 (PPLC-1, 51–402 ka, PPLC-3, 2248–2684 ka, and PPLC-4, 2915–4093 ka). Regional patterns of CaCO3 % minima can distinguish between low CaCO3 caused by high diatom bio-SiO2 dilution versus lows caused by high CaCO3 dissolution. CaCO3 dissolution can be confirmed through scanning XRF measurements of Ba. High diatom production causes lowest CaCO3 % within the equatorial high productivity zone, while higher dissolution causes lowest CaCO3 percent at higher latitudes where CaCO3 production is lower. The two diatom production intervals, PPLC-2 and PPLC-5, have different geographic footprints from each other because of regional changes in eastern Pacific nutrient storage after the closure of the Central American Seaway. Because of the regional variability in carbonate production and sedimentation, the carbonate compensation depth (CCD) approach is only useful to examine large changes in CaCO3 dissolution

    Kinetic approaches to particle acceleration at cosmic ray modified shocks

    Full text link
    Kinetic approaches provide an effective description of the process of particle acceleration at shock fronts and allow to take into account the dynamical reaction of the accelerated particles as well as the amplification of the turbulent magnetic field as due to streaming instability. The latter does in turn affect the maximum achievable momentum and thereby the acceleration process itself, in a chain of causality which is typical of non-linear systems. Here we provide a technical description of two of these kinetic approaches and show that they basically lead to the same conclusions. In particular we discuss the effects of shock modification on the spectral shape of the accelerated particles, on the maximum momentum, on the thermodynamic properties of the background fluid and on the escaping and advected fluxes of accelerated particles.Comment: 22 pages, 7 figures, accepted for publication in MNRA
    corecore