1,514 research outputs found
A Simplification of Combinatorial Link Floer Homology
We define a new combinatorial complex computing the hat version of link Floer
homology over Z/2Z, which turns out to be significantly smaller than the
Manolescu-Ozsvath-Sarkar one.Comment: 20 pages with figures, final version printed in JKTR, v.3 of
Oberwolfach Proceeding
Search for universality in one-dimensional ballistic annihilation kinetics
We study the kinetics of ballistic annihilation for a one-dimensional ideal
gas with continuous velocity distribution. A dynamical scaling theory for the
long time behavior of the system is derived. Its validity is supported by
extensive numerical simulations for several velocity distributions. This leads
us to the conjecture that all the continuous velocity distributions \phi(v)
which are symmetric, regular and such that \phi(0) does not vanish, are
attracted in the long time regime towards the same Gaussian distribution and
thus belong to the same universality class. Moreover, it is found that the
particle density decays as n(t)~t^{-\alpha}, with \alpha=0.785 +/- 0.005.Comment: 8 pages, needs multicol, epsf and revtex. 8 postscript figures
included. Submitted to Phys. Rev. E. Also avaiable at
http://mykonos.unige.ch/~rey/publi.html#Secon
Probabilistic ballistic annihilation with continuous velocity distributions
We investigate the problem of ballistically controlled reactions where
particles either annihilate upon collision with probability , or undergo an
elastic shock with probability . Restricting to homogeneous systems, we
provide in the scaling regime that emerges in the long time limit, analytical
expressions for the exponents describing the time decay of the density and the
root-mean-square velocity, as continuous functions of the probability and
of a parameter related to the dissipation of energy. We work at the level of
molecular chaos (non-linear Boltzmann equation), and using a systematic Sonine
polynomials expansion of the velocity distribution, we obtain in arbitrary
dimension the first non-Gaussian correction and the corresponding expressions
for the decay exponents. We implement Monte-Carlo simulations in two
dimensions, that are in excellent agreement with our analytical predictions.
For , numerical simulations lead to conjecture that unlike for pure
annihilation (), the velocity distribution becomes universal, i.e. does
not depend on the initial conditions.Comment: 10 pages, 9 eps figures include
Boltzmann and hydrodynamic description for self-propelled particles
We study analytically the emergence of spontaneous collective motion within
large bidimensional groups of self-propelled particles with noisy local
interactions, a schematic model for assemblies of biological organisms. As a
central result, we derive from the individual dynamics the hydrodynamic
equations for the density and velocity fields, thus giving a microscopic
foundation to the phenomenological equations used in previous approaches. A
homogeneous spontaneous motion emerges below a transition line in the
noise-density plane. Yet, this state is shown to be unstable against spatial
perturbations, suggesting that more complicated structures should eventually
appear.Comment: 4 pages, 3 figures, final versio
Liesegang patterns : Studies on the width law
The so-called "width law" for Liesegang patterns, which states that the
positions x_n and widths w_n of bands verify the relation x_n \sim w_n^{\alpha}
for some \alpha>0, is investigated both experimentally and theoretically. We
provide experimental data exhibiting good evidence for values of \alpha close
to 1. The value \alpha=1 is supported by theoretical arguments based on a
generic model of reaction-diffusion.Comment: 7 pages, RevTeX, two columns, 5 figure
Gauging kinematical and internal symmetry groups for extended systems: the Galilean one-time and two-times harmonic oscillators
The possible external couplings of an extended non-relativistic classical
system are characterized by gauging its maximal dynamical symmetry group at the
center-of-mass. The Galilean one-time and two-times harmonic oscillators are
exploited as models. The following remarkable results are then obtained: 1) a
peculiar form of interaction of the system as a whole with the external gauge
fields; 2) a modification of the dynamical part of the symmetry
transformations, which is needed to take into account the alteration of the
dynamics itself, induced by the {\it gauge} fields. In particular, the
Yang-Mills fields associated to the internal rotations have the effect of
modifying the time derivative of the internal variables in a scheme of minimal
coupling (introduction of an internal covariant derivative); 3) given their
dynamical effect, the Yang-Mills fields associated to the internal rotations
apparently define a sort of Galilean spin connection, while the Yang-Mills
fields associated to the quadrupole momentum and to the internal energy have
the effect of introducing a sort of dynamically induced internal metric in the
relative space.Comment: 32 pages, LaTex using the IOP preprint macro package (ioplppt.sty
available at: http://www.iop.org/). The file is available at:
http://www.fis.unipr.it/papers/1995.html The file is a uuencoded tar gzip
file with the IOP preprint style include
On the role of mobility and hunting effectiveness in a prey-predator model
Abstract.: We present a new, extended, predator-prey model for which we discuss the role of predators mobility and hunting effectiveness on the dynamics of the system. We show, via Monte Carlo simulations, that the maximum of predators' population density is a rather complex function of both - mobility and effectiveness of hunting. For a low mobility, larger effectiveness suits the predators better. When the mobility is large, the predators population is bigger if the predators are rather bad hunters. We have not observed temporal oscillations in the densities of both specie
Derivation of the Matalon-Packter law for Liesegang patterns
Theoretical models of the Liesegang phenomena are studied and simple
expressions for the spacing coefficients characterizing the patterns are
derived. The emphasis is on displaying the explicit dependences on the
concentrations of the inner- and the outer-electrolytes. Competing theories
(ion-product supersaturation, nucleation and droplet growth, induced sol-
coagulation) are treated with the aim of finding the distinguishing features of
the theories. The predictions are compared with experiments and the results
suggest that the induced sol-coagulation theory is the best candidate for
describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe
Nonuniform autonomous one-dimensional exclusion nearest-neighbor reaction-diffusion models
The most general nonuniform reaction-diffusion models on a one-dimensional
lattice with boundaries, for which the time evolution equations of corre-
lation functions are closed, are considered. A transfer matrix method is used
to find the static solution. It is seen that this transfer matrix can be
obtained in a closed form, if the reaction rates satisfy certain conditions. We
call such models superautonomous. Possible static phase transitions of such
models are investigated. At the end, as an example of superau- tonomous models,
a nonuniform voter model is introduced, and solved explicitly.Comment: 14 page
- …
