3 research outputs found

    High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts

    Get PDF
    Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha−1⋅season−1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term

    Invitro Inhibitory Effect of Polyherbal Formulation on Alpha-Amylase

    No full text
    Abstract: Diabetes Mellitus is a metabolic disorder characterized by high blood sugar level caused due to deficiency of insulin secretion or insulin action. One of the therapeutic approach to treat Type II Diabetes is to lower the postprandial blood glucose level by inhibition of carbohydrate hydrolyzing enzyme such as alpha-amylase. In present investigation polyherbal formulation (PHF) composed of 22 medicinal plants having anti-diabetic property were selected from WHO monographs and evaluated for in vitro alpha-amylase inhibitory activity. Air dried powders of 22 medicinal plants were divided into four categories. One formulation named as(PHF1) was used and prepared by mixing the powders in an optimized ratio of 80:10:5:5.Extracts of PHF1 prepared by soxhlet method using polar and non-polar solvent was subjected to Inhibition assay by using Dinitro salicylic acid (DNS) method and phytochemical constituents in the extract was analyzed qualitatively as well as by GC-MS.The results revealed the presence of glycosides, steroids, terpenoids, saponins, phenols and tannins. In vitro study indicates that PHF1 Hot water extract showed maximum percentage inhibitionof alphaamylase activity. This hot water extract of PHF1 can be effective in lowering postprandial hyperglycemia (PPHG)
    corecore