8 research outputs found

    TGGLinesPlus: A robust topological graph-guided computer vision algorithm for line detection from images

    Full text link
    Line detection is a classic and essential problem in image processing, computer vision and machine intelligence. Line detection has many important applications, including image vectorization (e.g., document recognition and art design), indoor mapping, and important societal challenges (e.g., sea ice fracture line extraction from satellite imagery). Many line detection algorithms and methods have been developed, but robust and intuitive methods are still lacking. In this paper, we proposed and implemented a topological graph-guided algorithm, named TGGLinesPlus, for line detection. Our experiments on images from a wide range of domains have demonstrated the flexibility of our TGGLinesPlus algorithm. We also benchmarked our algorithm with five classic and state-of-the-art line detection methods and the results demonstrate the robustness of TGGLinesPlus. We hope our open-source implementation of TGGLinesPlus will inspire and pave the way for many applications where spatial science matters.Comment: Our TGGLinesPlus Python implementation is open source. 27 pages, 8 figures and 4 table

    ImpDAR: an open-source impulse radar processor

    No full text
    AbstractDespite widespread use of radio-echo sounding (RES) in glaciology and broad distribution of processed radar products, the glaciological community has no standard software for processing impulse RES data. Dependable, fast and collection-system/platform-independent processing flows could facilitate comparison between datasets and allow full utilization of large impulse RES data archives and new data. Here, we present ImpDAR, an open-source, cross-platform, impulse radar processor and interpreter, written primarily in Python. The utility of this software lies in its collection of established tools into a single, open-source framework. ImpDAR aims to provide a versatile standard that is accessible to radar-processing novices and useful to specialists. It can read data from common commercial ground-penetrating radars (GPRs) and some custom-built RES systems. It performs all the standard processing steps, including bandpass and horizontal filtering, time correction for antenna spacing, geolocation and migration. After processing data, ImpDAR's interpreter includes several plotting functions, digitization of reflecting horizons, calculation of reflector strength and export of interpreted layers. We demonstrate these capabilities on two datasets: deep (~3000 m depth) data collected with a custom (3 MHz) system in northeast Greenland and shallow (&lt;100 m depth, 500 MHz) data collected with a commercial GPR on South Cascade Glacier in Washington.</jats:p

    Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing

    No full text
    Water features (e.g., water quantity and water quality) are one of the most important environmental factors essential to improving climate-change resilience. Remote sensing (RS) technologies empowered by artificial intelligence (AI) have become one of the most demanded strategies to automating water information extraction and thus intelligent monitoring. In this article, we provide a systematic review of the literature that incorporates artificial intelligence and computer vision methods in the water resources sector with a focus on intelligent water body extraction and water quality detection and monitoring through remote sensing. Based on this review, the main challenges of leveraging AI and RS for intelligent water information extraction are discussed, and research priorities are identified. An interactive web application designed to allow readers to intuitively and dynamically review the relevant literature was also developed.</jats:p

    Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing

    No full text
    Water features (e.g., water quantity and water quality) are one of the most important environmental factors essential to improving climate-change resilience. Remote sensing (RS) technologies empowered by artificial intelligence (AI) have become one of the most demanded strategies to automating water information extraction and thus intelligent monitoring. In this article, we provide a systematic review of the literature that incorporates artificial intelligence and computer vision methods in the water resources sector with a focus on intelligent water body extraction and water quality detection and monitoring through remote sensing. Based on this review, the main challenges of leveraging AI and RS for intelligent water information extraction are discussed, and research priorities are identified. An interactive web application designed to allow readers to intuitively and dynamically review the relevant literature was also developed

    Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review

    No full text
    Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review.</jats:p

    Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review

    No full text
    Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review

    Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review

    No full text
    Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review
    corecore