17 research outputs found

    Genetic control of Schwann cell differentiation

    Get PDF
    Schwann cellen myelineren axonen onder de invloed van axonale signalen. Het is nog niet volkomen duidelijk welke signalen dat zijn. Ondanks dat zijn er de laatste jaren wel veel intracellulaire regulatoren van het myelinatie programma geïdentificeerd en bestudeerd. Verschillende factoren die een rol spelen tijdens de ontwikkeling van de myelinerende Schwann cel worden in dit proefschrift beschreven. Twee van de belangrijkste factoren zijn Oct-6 en Krox-20. Wanneer een van beide factoren afwezig is tijdens de ontwikkeling dan vindt er geen myelinatie plaats in de Krox-20 knock-out muis en in de Oct-6 knock-out muis uiteindelijk wel, maar met een flinke vertraging. Omdat er in de Oct-6 mutant uiteindelijk alsnog myelinatie plaatsvindt is er gezocht naar eventuele ander factoren die daar verantwoordelijk voor zouden kunnen zijn. Het blijkt nu als Brn-2 samen met Oct-6 afwezig is tijdens de ontwikkeling van de zenuwen dat dan ook in dit geval geen myelinatie meer optreedt. Wanneer nu overexpressie van Brn-2 in de Oct-6 mutant tot stand wordt gebracht blijkt dat myelinatie van de axonen op bijna het normale niveau plaats vindt. Naast deze Oct-6 en Krox-20 mutanten is er ook nog een natuurlijke mutant clawpaw. Deze mutant vertoont net als de Oct-6 mutant een ernstige vertraging in de myelinatie van de axonen. De natuurlijke mutant clawpaw heeft een afwijkende Lgi4 expressie. Dit kan een indicatie zijn dat Lgi4 betrokken is bij het myelinatie proces in de Schwann cel

    Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination

    Get PDF
    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    On the change of growth and wood constructive substances in Salix Koriyanagi which was grown in different soil moisture conditions

    Get PDF
    textabstractThe cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination

    Get PDF
    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    The Erythroid Phenotype of EKLF-Null Mice: Defects in Hemoglobin Metabolism and Membrane Stability

    No full text
    Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Krüppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in β-globin expression. To identify additional target genes, we analyzed the phenotype and gene expression profiles of wild-type and EKLF null primary erythroid progenitors that were differentiated synchronously in vitro. We show that EKLF is dispensable for expansion of erythroid progenitors, but required for the last steps of erythroid differentiation. We identify EKLF-dependent genes involved in hemoglobin metabolism and membrane stability. Strikingly, expression of these genes is also EKLF-dependent in primitive, yolk sac-derived, blood cells. Consistent with lack of upregulation of these genes we find previously undetected morphological abnormalities in EKLF-null primitive cells. Our data provide an explanation for the hitherto unexplained severity of the EKLF null phenotype in erythropoiesis

    Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination

    Get PDF
    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration

    Get PDF
    While an important role for the POU domain transcription factor Oct-6 in the developing peripheral nerve has been well established, studies into its exact role in nerve development and regeneration have been hampered by the high mortality rate of newborn Oct-6 mutant animals. In this study we have generated a Schwann cell-specific Oct-6 allele through deletion of the Schwann cell-specific enhancer element (SCE) in the Oct-6 locus. Analysis of mice homozygous for this allele (ΔSCE allele) reveals that rate-limiting levels of Oct-6 in Schwann cells are dependent on the SCE and that this element does not contribute to Oct-6 regulation in other cell types. We demonstrate a Schwann cell autonomous function for Oct-6 during nerve development as well as in regenerating nerve. Additionally, we show that Krox-20, an important regulatory target of Oct-6 in Schwann cells, is activated, with delayed kinetics, through an Oct-6-independent mechanism in these mice

    The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development

    No full text
    The genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during development and tissue regeneration in adults following damage. In this report we demonstrate the involvement of a third transcription factor, the POU domain factor Brn-2. We show that Schwann cells express Brn-2 in a developmental profile similar to that of Oct-6 and that Brn-2 gene activation does not depend on Oct-6. Overexpression of Brn-2 in Oct-6-deficient Schwann cells, under control of the Oct-6 Schwann cell enhancer (SCE), results in partial rescue of the developmental delay phenotype, whereas compound disruption of both Brn-2 and Oct-6 results in a much more severe phenotype. Together these data strongly indicate that Brn-2 function largely overlaps with that of Oct-6 in driving the transition from promyelinating to myelinating Schwann cells
    corecore