885 research outputs found

    The period of a classical oscillator

    Full text link
    We develop a simple method to obtain approximate analytical expressions for the period of a particle moving in a given potential. The method is inspired to the Linear Delta Expansion (LDE) and it is applied to a large class of potentials. Precise formulas for the period are obtained.Comment: 5 pages, 4 figure

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, Gmax⁥G_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into L∌Lˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)∌Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Transition to turbulence in particulate pipe flow

    Get PDF
    We investigate experimentally the influence of suspended particles on the transition to turbulence. The particles are monodisperse and neutrally-buoyant with the liquid. The role of the particles on the transition depends both upon the pipe to particle diameter ratios and the concentration. For large pipe-to-particle diameter ratios the transition is delayed while it is lowered for small ratios. A scaling is proposed to collapse the departure from the critical Reynolds number for pure fluid as a function of concentration into a single master curve.Comment: 4 pages, 4 figure

    Kelvin-Helmholtz instability in coronal magnetic flux tubes due to azimuthal shear flows

    Full text link
    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. (2008, ApJ 687, L115) suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation, and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in time-scales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.Comment: Submitted in Ap

    Wave chaos as signature for depletion of a Bose-Einstein condensate

    Full text link
    We study the expansion of repulsively interacting Bose-Einstein condensates (BECs) in shallow one-dimensional potentials. We show for these systems that the onset of wave chaos in the Gross-Pitaevskii equation (GPE), i.e. the onset of exponential separation in Hilbert space of two nearby condensate wave functions, can be used as indication for the onset of depletion of the BEC and the occupation of excited modes within a many-body description. Comparison between the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method and the GPE reveals a close correspondence between the many-body effect of depletion and the mean-field effect of wave chaos for a wide range of single-particle external potentials. In the regime of wave chaos the GPE fails to account for the fine-scale quantum fluctuations because many-body effects beyond the validity of the GPE are non-negligible. Surprisingly, despite the failure of the GPE to account for the depletion, coarse grained expectation values of the single-particle density such as the overall width of the atomic cloud agree very well with the many-body simulations. The time dependent depletion of the condensate could be investigated experimentally, e.g., via decay of coherence of the expanding atom cloud.Comment: 12 pages, 10 figure

    Waves and instability in a one-dimensional microfluidic array

    Full text link
    Motion in a one-dimensional (1D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are arranged in a single row, and due to their hydrodynamic interactions spacing between these droplets oscillates with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in the interaction potential. The instability's growth is spatially localized. By selecting an appropriate correlation function, the interaction between the longitudinal and transverse waves is described

    Variational bound on energy dissipation in turbulent shear flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wavenumbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz file from [email protected]
    • 

    corecore