325 research outputs found
Plant sterols cause macrothrombocytopenia in a mouse model of sitosterolemia
Mutations in either ABCG5 or ABCG8 cause sitosterolemia, an inborn error of metabolism characterized by high plasma plant sterol concentrations. Recently, macrothrombocytopenia was described in a number of sitosterolemia patients, linking hematological dysfunction to disturbed sterol metabolism. Here, we demonstrate that macrothrombocytopenia is an intrinsic feature of murine sitosterolemia. Abcg5-deficient (Abcg5(-/-)) mice showed a 68% reduction in platelet count, and platelets were enlarged compared with wild-type controls. Macrothrombocytopenia was not due to decreased numbers of megakaryocytes or their progenitors, but defective megakaryocyte development with deterioration of the demarcation membrane system was evident. Lethally irradiated wild-type mice transplanted with bone marrow from Abcg5(-/-) mice displayed normal platelets, whereas Abcg5(-/-) mice transplanted with wild-type bone marrow still showed macrothrombocytopenia. Treatment with the sterol absorption inhibitor ezetimibe rapidly reversed macrothrombocytopenia in Abcg5(-/-) mice concomitant with a strong decrease in plasma plant sterols. Thus, accumulation of plant sterols is responsible for development of macrothrombocytopenia in sitosterolemia, and blocking intestinal plant sterol absorption provides an effective means of treatment
Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects
AbstractMultifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12mm3 and median in-plane area of 4mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces
Evaluation of Brain Iron Content Based on Magnetic Resonance Imaging (MRI): Comparison among Phase Value, R2* and Magnitude Signal Intensity
Background and Purpose: Several magnetic resonance imaging (MRI) techniques are being exploited to measure brain iron levels increasingly as iron deposition has been implicated in some neurodegenerative diseases. However, there remains no unified evaluation of these methods as postmortem measurement isn’t commonly available as the reference standard. The purpose of this study was to make a comparison among these methods and try to find a new index of brain iron. Methods: We measured both phase values and R2 * in twenty-four adults, and performed correlation analysis among the two methods and the previously published iron concentrations. We also proposed a new method using magnitude signal intensity and compared it with R2 * and brain iron. Results: We found phase value correlated with R2 * in substantia nigra (r = 20.723, p,0.001) and putamen (r = 20.514, p = 0.010), while no correlations in red nucleus (r = 20.236, p = 0.268) and globus pallidus (r = 20.111, p = 0.605). And the new magnitude method had significant correlations in red nucleus (r = 20.593, p = 0.002), substantia nigra (r = 20.521, p = 0.009), globus pallidus (r = 20.750, p,0.001) and putamen (r = 20.547, p = 0.006) with R2*. A strong inverse correlation was also found between the new magnitude method and previously published iron concentrations in seven brain regions (r = 20.982, P,0.001). Conclusions: Our study indicates that phase value may not be used for assessing the iron content in some brain region
Clinical correlates of grey matter pathology in multiple sclerosis
Traditionally, multiple sclerosis has been viewed as a disease predominantly affecting white matter. However, this view has lately been subject to numerous changes, as new evidence of anatomical and histological changes as well as of molecular targets within the grey matter has arisen. This advance was driven mainly by novel imaging techniques, however, these have not yet been implemented in routine clinical practice. The changes in the grey matter are related to physical and cognitive disability seen in individuals with multiple sclerosis. Furthermore, damage to several grey matter structures can be associated with impairment of specific functions. Therefore, we conclude that grey matter damage - global and regional - has the potential to become a marker of disease activity, complementary to the currently used magnetic resonance markers (global brain atrophy and T2 hyperintense lesions). Furthermore, it may improve the prediction of the future disease course and response to therapy in individual patients and may also become a reliable additional surrogate marker of treatment effect
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …