81 research outputs found

    Organic nitrate aerosol formation via NO³ + biogenic volatile organic compounds in the southeastern United States

    Get PDF
    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO₃) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO₃ to terpenes are correlated with increase in gasand aerosol-organic nitrate concentrations made during the campaign. Correlation of NO₃ radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C₁₀H₁₇NO₅, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C₅H₉NO₅ was observed to contribute less than 1% of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45% of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO₃ uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO₃ CBVOCs

    Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine

    Get PDF
    Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) — using AS01B-adjuvanted RH5.1 malaria antigen — substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells

    Mass Enhancement of Two-Dimensional Electrons in Thin Oxide Si-MOSFETs

    No full text
    We report in this paper a study of the effective mass in thin oxide Si-MOSFETs, using the temperature dependence of the Shubnikov-de Haas (SdH) effect and following the methodology developed by Smith and Stiles
    corecore