330 research outputs found

    Forbidden transitions in the helium atom

    Get PDF
    Nonrelativistically forbidden, single-photon transition rates between low lying states of the helium atom are rigorously derived within quantum electrodynamics theory. Equivalence of velocity and length gauges, including relativistic corrections is explicitly demonstrated. Numerical calculations of matrix elements are performed with the use of high precision variational wave functions and compared to former results.Comment: 11 pages, 1 figure, submitted to Phys. Rev.

    Evaluation of the low-lying energy levels of two- and three-electron configurations for multi-charged ions

    Get PDF
    Accurate QED evaluations of the one- and two-photon interelectron interaction for low lying two- and three-electron configurations for ions with nuclear charge numbers 60Z9360\le Z \le 93 are performed. The three-photon interaction is also partly taken into account. The Coulomb gauge is employed. The results are compared with available experimental data and with different calculations. A detailed investigation of the behaviour of the energy levels of the configurations 1s1/22s1/21S01s_{1/2}2s_{1/2} {}^1 S_0, 1s1/22p1/23P01s_{1/2}2p_{1/2} {}^3 P_0 near the crossing points Z=64 and Z=92 is carried out. The crossing points are important for the future experimental search for parity nonconserving (PNC) effects in highly charged ions

    The scaling attractor and ultimate dynamics for Smoluchowski's coagulation equations

    Full text link
    We describe a basic framework for studying dynamic scaling that has roots in dynamical systems and probability theory. Within this framework, we study Smoluchowski's coagulation equation for the three simplest rate kernels K(x,y)=2K(x,y)=2, x+yx+y and xyxy. In another work, we classified all self-similar solutions and all universality classes (domains of attraction) for scaling limits under weak convergence (Comm. Pure Appl. Math 57 (2004)1197-1232). Here we add to this a complete description of the set of all limit points of solutions modulo scaling (the scaling attractor) and the dynamics on this limit set (the ultimate dynamics). The main tool is Bertoin's L\'{e}vy-Khintchine representation formula for eternal solutions of Smoluchowski's equation (Adv. Appl. Prob. 12 (2002) 547--64). This representation linearizes the dynamics on the scaling attractor, revealing these dynamics to be conjugate to a continuous dilation, and chaotic in a classical sense. Furthermore, our study of scaling limits explains how Smoluchowski dynamics ``compactifies'' in a natural way that accounts for clusters of zero and infinite size (dust and gel)

    Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain.

    Get PDF
    Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway

    Search for Possible Variation of the Fine Structure Constant

    Full text link
    Determination of the fine structure constant alpha and search for its possible variation are considered. We focus on a role of the fine structure constant in modern physics and discuss precision tests of quantum electrodynamics. Different methods of a search for possible variations of fundamental constants are compared and those related to optical measurements are considered in detail.Comment: An invited talk at HYPER symposium (Paris, 2002

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Effectiveness of Metyrapone in Treating Cushing's Syndrome: A Retrospective Multicenter Study in 195 Patients

    Get PDF
    Background: Cushing's syndrome (CS) is a severe condition with excess mortality and significant morbidity necessitating control of hypercortisolemia. There are few data documenting use of the steroidogenesis inhibitor metyrapone for this purpose. Objective: The objective was to assess the effectiveness of metyrapone in controlling cortisol excess in a contemporary series of patients with CS. Design: This was designed as a retrospective, multicenter study. Setting: Thirteen University hospitals were studied. Patients: We studied a total of 195 patients with proven CS: 115 Cushing's disease, 37 ectopic ACTH syndrome, 43 ACTH-independent disease (adrenocortical carcinoma 10, adrenal adenoma 30, and ACTH-independent adrenal hyperplasia 3). Measurements: Measurements included biochemical parameters of activity of CS: mean serum cortisol “day-curve” (CDC) (target 150–300 nmol/L); 9 am serum cortisol; 24-hour urinary free cortisol (UFC). Results: A total of 164/195 received metyrapone monotherapy. Mean age was 49.6 ± 15.7 years; mean duration of therapy 8 months (median 3 mo, range 3 d to 11.6 y). There were significant improvements on metyrapone, first evaluation to last review: CDC (91 patients, 722.9 nmol/L [26.2 μg/dL] vs 348.6 nmol/L [12.6 μg/dL]; P < .0001); 9 am cortisol (123 patients, 882.9 nmol/L [32.0 μg/dL] vs 491.1 nmol/L [17.8 μg/dL]; P < .0001); and UFC (37 patients, 1483 nmol/24 h [537 μg/24 h] vs 452.6 nmol/24 h [164 μg/24 h]; P = .003). Overall, control at last review: 55%, 43%, 46%, and 76% of patients who had CDCs, UFCs, 9 am cortisol less than 331 nmol/L (12.0 μg/dL), and 9 am cortisol less than upper limit of normal/600 nmol/L (21.7 μg/dL). Median final dose: Cushing's disease 1375 mg; ectopic ACTH syndrome 1500 mg; benign adrenal disease 750 mg; and adrenocortical carcinoma 1250 mg. Adverse events occurred in 25% of patients, mostly mild gastrointestinal upset and dizziness, usually within 2 weeks of initiation or dose increase, all reversible. Conclusions: Metyrapone is effective therapy for short- and long-term control of hypercortisolemia in CS

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
    corecore