768 research outputs found
Recommended from our members
Health Researchers' Use of Social Media: Scoping Review.
BackgroundHealth researchers are increasingly using social media in a professional capacity, and the applications of social media for health researchers are vast. However, there is currently no published evidence synthesis of the ways in which health researchers use social media professionally, and uncertainty remains as to how best to harness its potential.ObjectiveThis scoping review aimed to explore how social media is used by health researchers professionally, as reported in the literature.MethodsThe scoping review methodology guided by Arksey and O'Malley and Levac et al was used. Comprehensive searches based on the concepts of health research and social media were conducted in MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, and Web of Science databases, with no limitations applied. Articles were screened at the title and abstract level and at full text by two reviewers. One reviewer extracted data that were analyzed descriptively to map the available evidence.ResultsA total of 8359 articles were screened at the title and abstract level, of which 719 were also assessed at full text for eligibility. The 414 articles identified for inclusion were published in 278 different journals. Studies originated from 31 different countries, with the most prevalent being the United States (52.7% [218/414]). The health discipline of the first authors varied, with medicine (33.3% [138/414]) being the most common. A third of the articles covered health generally, with 61 health-specific topics. Papers used a range of social media platforms (mean 1.33 [SD 0.7]). A quarter of the articles screened reported on social media use for participant recruitment (25.1% [104/414]), followed by practical ways to use social media (15.5% [64/414]), and use of social media for content analysis research (13.3% [55/414]). Articles were categorized as celebratory (ie, opportunities for engagement, 72.2% [299/414]), contingent (ie, opportunities and possible limitations, 22.7% [94/414]) and concerned (ie, potentially harmful, 5.1% [21/414]).ConclusionsHealth researchers are increasingly publishing on their use of social media for a range of professional purposes. Although most of the sentiment around the use of social media in health research was celebratory, the uses of social media varied widely. Future research is needed to support health researchers to optimize their social media use
Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy
We analyze several possibilities for precisely measuring electronic
transitions in atomic helium by the direct use of phase-stabilized femtosecond
frequency combs. Because the comb is self-calibrating and can be shifted into
the ultraviolet spectral region via harmonic generation, it offers the prospect
of greatly improved accuracy for UV and far-UV transitions. To take advantage
of this accuracy an ultracold helium sample is needed. For measurements of the
triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap
metastable 2^3S state atoms. We analyze schemes for measuring the two-photon
interval, and for resonant two-photon excitation to high
Rydberg states, . We also analyze experiments on the
singlet-state spectrum. To accomplish this we propose schemes for producing and
trapping ultracold helium in the 1^1S or 2^1S state via intercombination
transitions. A particularly intriguing scenario is the possibility of measuring
the transition with extremely high accuracy by use of
two-photon excitation in a magic wavelength trap that operates identically for
both states. We predict a ``triple magic wavelength'' at 412 nm that could
facilitate numerous experiments on trapped helium atoms, because here the
polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and
positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.
Modeling the Low State Spectrum of the X-Ray Nova XTE J1118+480
Based on recent multiwavelength observations of the new X-ray nova XTE
J1118+480, we can place strong constraints on the geometry of the accretion
flow in which a low/hard state spectrum, characteristic of an accreting black
hole binary, is produced. We argue that the absence of any soft blackbody-like
component in the X-ray band implies the existence of an extended hot
optically-thin region, with the optically-thick cool disk truncated at some
radius R_{tr} > 55 R_{Schw}. We show that such a model can indeed reproduce the
main features of the observed spectrum: the relatively high optical to X-ray
ratio, the sharp downturn in the far UV band and the hard X-ray spectrum. The
absence of the disk blackbody component also underscores the requirement that
the seed photons for thermal Comptonization be produced locally in the hot
flow, e.g. via synchrotron radiation. We attribute the observed spectral break
at 2 keV to absorption in a warm, partially ionized gas.Comment: 6 pages, including 1 figure; LaTeX (emulateapj5.sty), to appear in
Ap
Simultaneous X-ray and UV spectroscopy of the Seyfert 1 galaxy NGC 5548.II. Physical conditions in the X-ray absorber
We present the results from a 500 ks Chandra observation of the Seyfert 1
galaxy NGC 5548. We detect broadened emission lines of O VII and C VI in the
spectra, similar to those observed in the optical and UV bands. The source was
continuously variable, with a 30 % increase in luminosity in the second half of
the observation. No variability in the warm absorber was detected between the
spectra from the first 170 ks and the second part of the observation. The
velocity structure of the X-ray absorber is consistent with the velocity
structure measured simultaneously in the ultraviolet spectra. We find that the
highest velocity outflow component, at -1040 km/s, becomes increasingly
important for higher ionization parameters. This velocity component spans at
least three orders of magnitude in ionization parameter, producing both highly
ionized X-ray absorption lines (Mg XII, Si XIV) as well as UV absorption lines.
A similar conclusion is very probable for the other four velocity components.
Based upon our observations, we argue that the warm absorber probably does not
manifest itself in the form of photoionized clumps in pressure equilibrium with
a surrounding wind. Instead, a model with a continuous distribution of column
density versus ionization parameter gives an excellent fit to our data. From
the shape of this distribution and the assumption that the mass loss through
the wind should be smaller than the accretion rate onto the black hole, we
derive upper limits to the solid angle as small as 10^{-4} sr. From this we
argue that the outflow occurs in density-stratified streamers. The density
stratification across the stream then produces the wide range of ionization
parameter observed in this source. Abridged.Comment: 21 pages, 12 figures accepted for publication in A&
Exploring the Optical Transient Sky with the Palomar Transient Factory
The Palomar Transient Factory (PTF) is a wide-field experiment designed to
investigate the optical transient and variable sky on time scales from minutes
to years. PTF uses the CFH12k mosaic camera, with a field of view of 7.9 deg^2
and a plate scale of 1 asec/pixel, mounted on the the Palomar Observatory
48-inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe
the existing gaps in the transient phase space and to search for theoretically
predicted, but not yet detected, phenomena, such as fallback supernovae,
macronovae, .Ia supernovae and the orphan afterglows of gamma-ray bursts. PTF
will also discover many new members of known source classes, from cataclysmic
variables in their various avatars to supernovae and active galactic nuclei,
and will provide important insights into understanding galactic dynamics
(through RR Lyrae stars) and the Solar system (asteroids and near-Earth
objects). The lessons that can be learned from PTF will be essential for the
preparation of future large synoptic sky surveys like the Large Synoptic Survey
Telescope. In this paper we present the scientific motivation for PTF and
describe in detail the goals and expectations for this experiment.Comment: 15 pages, 6 figures, submitted to PAS
TESS Discovery of a Transiting Super-Earth in the Mensae System
We report the detection of a transiting planet around Mensae (HD
39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The
solar-type host star is unusually bright (V=5.7) and was already known to host
a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered
planet has a size of and an orbital period of 6.27
days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays
a 6.27-day periodicity, confirming the existence of the planet and leading to a
mass determination of . The star's proximity and
brightness will facilitate further investigations, such as atmospheric
spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry,
and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the
TESS Alert data, which is currently in a beta test phase. The discovery light
curve is included in a table inside the arxiv submissio
Recent Advances in Graph Partitioning
We survey recent trends in practical algorithms for balanced graph
partitioning together with applications and future research directions
TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz
The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich
nuclides with production rates sufficiently large for mass spectrometric and
laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as
well as a beam line for collinear laser spectroscopy are being installed.
Several new developments will ensure high sensitivity of the trap setup
enabling mass measurements even on a single ion. Besides neutron-rich fission
products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf
can be investigated for the first time with an off-line ion source. The data
provided by the mass measurements will be of interest for astrophysical
calculations on the rapid neutron-capture process as well as for tests of mass
models in the heavy-mass region. The laser spectroscopic measurements will
yield model-independent information on nuclear ground-state properties such as
nuclear moments and charge radii of neutron-rich nuclei of refractory elements
far from stability. This publication describes the experimental setup as well
as its present status.Comment: 20 pages, 17 figure
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …
