127 research outputs found

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Walk well:a randomised controlled trial of a walking intervention for adults with intellectual disabilities: study protocol

    Get PDF
    Background - Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design - This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion - Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities

    Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed

    Get PDF
    BACKGROUND: Intermediate-conductance, calcium-activated potassium channels (IKs) modulate proliferation and differentiation in mesodermal cells by enhancing calcium influx, and they contribute to the physiology of fluid movement in certain epithelia. Previous reports suggest that IK channels stimulate proliferative growth in a keratinocyte cell line; however, because these channels indirectly promote calcium influx, a critically unique component of the keratinocyte differentiation program, an alternative hypothesis is that they would be anti-proliferative and pro-differentiating. This study addresses these hypotheses. METHODS: Real-time PCR, patch clamp electrophysiology, and proliferation assays were used to determine if human IK1 (hIK1) expression and function are correlated with either proliferation or differentiation in cultured human skin epidermal keratinocytes, and skin biopsies grown in explant culture. RESULTS: hIK1 mRNA expression in human keratinocytes and skin was increased in response to anti-proliferative/pro-differentiating stimuli (elevated calcium and Vitamin D). Correspondingly, the hIK1 agonist 1-EBIO inhibited keratinocyte proliferation suggesting that the channel could be anti-proliferative and pro-differentiating. However, this proliferative inhibition by 1-EBIO was not reversed by a panel of hIK1 blockers, calling into question the mechanism of 1-EBIO action. Subsequent patch clamp electrophysiological analysis failed to detect hIK1 channel currents in keratinocytes, even those expressing substantial hIK1 mRNA in response to calcium and Vitamin D induced differentiation. Identical electrophysiological recording conditions were then used to observe robust IK1 currents in fibroblasts which express IK1 mRNA levels comparable to those of keratinocytes. Thus, the absence of observable hIK1 currents in keratinocytes was not a function of the electrophysiological techniques. CONCLUSION: Human keratinocyte differentiation is stimulated by calcium mobilization and influx, and differentiation stimuli coordinately upregulate mRNA levels of the calcium-activated hIK1 channel. This upregulation is paradoxical in that functional hIK1 channels are not observed in cultured keratinocytes. It appears, therefore, that hIK1 does not contribute to the functional electrophysiology of primary human keratinocytes, nor intact human skin. Further, the results indicate caution is required when interpreting experiments utilizing pharmacological hIK1 modulators in human keratinocytes

    A-002 (Varespladib), a phospholipase A2 inhibitor, reduces atherosclerosis in guinea pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of elevated serum levels of secretory phospholipase A<sub>2 </sub>(sPLA<sub>2</sub>) in patients with cardiovascular disease and their presence in atherosclerotic lesions suggest the participation of sPLA<sub>2 </sub>enzymes in this disease. The presence of more advanced atherosclerotic lesions in mice that overexpress sPLA<sub>2 </sub>enzymes suggest their involvement in the atherosclerotic process. Therefore, the sPLA<sub>2 </sub>family of enzymes could provide reasonable targets for the prevention and treatment of atherosclerosis. Thus, A-002 (varespladib), an inhibitor of sPLA<sub>2</sub>enzymes, is proposed to modulate the development of atherosclerosis.</p> <p>Methods</p> <p>Twenty-four guinea pigs were fed a high saturated fat, high cholesterol diet (0.25%) for twelve weeks. Animals were treated daily with A-002 (n = 12) or vehicle (10% aqueous acacia; n = 12) by oral gavage. After twelve weeks, animals were sacrificed and plasma, heart and aorta were collected. Plasma lipids were measured by enzymatic methods, lipoprotein particles size by nuclear magnetic resonance, aortic cytokines by a colorimetric method, and aortic sinus by histological analyses.</p> <p>Results</p> <p>Plasma total cholesterol, HDL cholesterol and triglycerides were not different among groups. However, the levels of inflammatory cytokines interleukin (IL)-10, IL-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly reduced in the treatment group. This group also had a significant 27% reduction in cholesterol accumulation in aorta compared with placebo group. Morphological analysis of aortic sinus revealed that the group treated with A-002 reduced atherosclerotic lesions by 24%.</p> <p>Conclusion</p> <p>The use of A-002 may have a beneficial effect in preventing diet-induced atherosclerosis in guinea pigs.</p

    Comparative mRNA and microRNA Expression Profiling of Three Genitourinary Cancers Reveals Common Hallmarks and Cancer-Specific Molecular Events

    Get PDF
    Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications

    ARRDC3 suppresses breast cancer progression by negatively regulating integrin β4

    Get PDF
    Large-scale genetic analyses of human tumor samples have been used to identify novel oncogenes, tumor suppressors and prognostic factors, but the functions and molecular interactions of many individual genes have not been determined. In this study we examined the cellular effects and molecular mechanism of the arrestin family member, ARRDC3, a gene preferentially lost in a subset of breast cancers. Oncomine data revealed that the expression of ARRDC3 decreases with tumor grade, metastases and recurrences. ARRDC3 overexpression represses cancer cell proliferation, migration, invasion, growth in soft agar and in vivo tumorigenicity, whereas downregulation of ARRCD3 has the opposite effects. Mechanistic studies showed that ARRDC3 functions in a novel regulatory pathway that controls the cell surface adhesion molecule, β-4 integrin (ITGβ4), a protein associated with aggressive tumor behavior. Our data indicates ARRDC3 directly binds to a phosphorylated form of ITGβ4 leading to its internalization, ubiquitination and ultimate degradation. The results identify the ARRCD3-ITGβ4 pathway as a new therapeutic target in breast cancer and show the importance of connecting genetic arrays with mechanistic studies in the search for new treatments
    corecore