10 research outputs found

    Classical and noncanonical functions of miRNAs in cancers

    No full text
    Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action

    CRISPR/Cas9 to Silence Long Non-Coding RNAs

    No full text
    Knock-out (KO) of long non-coding RNAs (lncRNAs) enables functional characterization of this still poorly described group of transcripts. One of the most efficient and simplest methods to achieve complete KO of a lncRNA is by employing CRISPR/Cas gene editing. As most lncRNAs are not well annotated, their individual functional regions are not defined, and the majority of the transcripts are not affected by single nucleotide mutations. Therefore, CRISPR/Cas KO is more challenging for lncRNAs as compared to KO of protein coding genes. Strategies for lncRNAs KO include complete removal of the entire gene, removal of the promoter and transcriptional start site, abolishing exon-exon junctions, or removing the transcriptional termination site. Here, we describe the methodology to perform CRISPR/Cas9 KO of lncRNAs in vitro using electroporation as the method of transfection of pre-synthesized single guide RNAs (sgRNAs) and Cas9 enzyme

    A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment

    Get PDF
    One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients

    FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs

    Get PDF
    Non-coding RNAs (ncRNAs) are essential players in many cellular processes, from normal development to oncogenic transformation. Initially, ncRNAs were defined as transcripts that lacked an open reading frame (ORF). However, multiple lines of evidence suggest that certain ncRNAs encode small peptides of less than 100 amino acids. The sequences encoding these peptides are known as small open reading frames (smORFs), many initiating with the traditional AUG start codon but terminating with atypical stop codons, suggesting a different biogenesis. The ncRNA-encoded peptides (ncPEPs) are gradually becoming appreciated as a new class of functional molecules that contribute to diverse cellular processes, and are deregulated in different diseases contributing to pathogenesis. As multiple publications have identified unique ncPEPs, we appreciated the need for assembling a new web resource that could gather information about these functional ncPEPs. We developed FuncPEP, a new database of functional ncRNA encoded peptides, containing all experimentally validated and functionally characterized ncPEPs. Currently, FuncPEP includes a comprehensive annotation of 112 functional ncPEPs and specific details regarding the ncRNA transcripts that encode these peptides. We believe that FuncPEP will serve as a platform for further deciphering the biologic significance and medical use of ncPEPs. The link for FuncPEP database can be found at the end of the Introduction Section

    COVID-19: Autopsy findings in six patients between 26 and 46 years of age

    Get PDF
    Objectives: Studies on coronavirus disease 2019 (COVID-19) usually focus on middle-aged and older adults. However, younger patients may present with severe COVID-19 with potentially fatal outcomes. For optimized, more specialized therapeutic regimens in this particular patient group, a better understanding of the underlying pathomechanisms is of utmost importance. Methods: Our study investigated relevant, pre-existing medical conditions, clinical histories, and autopsy findings, together with SARS-CoV-2-RNA, determined by qPCR, and laboratory data in six COVID-19 decedents aged 50 years or younger, who were autopsied at the Charite University Hospital. Results: From a total of 76 COVID-19 patients who underwent an autopsy at our institution, six (7.9%) were 50 years old or younger. Most of these younger COVID-19 decedents presented with pre-existing medical conditions prior to SARS-CoV-2 infection. These included overweight and obesity, arterial hypertension, asthma, and obstructive sleep apnea, as well as graft-versus-host disease following cancer and bone marrow transplantation. Furthermore, clinical histories and autopsy results revealed a disproportionally high prevalence of thromboembolism and ischemic organ damage in this patient cohort. Histopathology and laboratory results indicated coagulopathies, signs of immune dysregulation, and liver damage. Conclusions: In conclusion, pre-existing health conditions may increase the risk of severe and fatal COVID-19 in younger patients, who may be especially prone to developing thromboembolic complications, immune dysregulation, and liver damage

    miRNAs involvement in the pathogenesis of Richter's syndrome

    Get PDF
    Richter syndrome represents the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNAs that have already proved to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNAs involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of Richter syndrome cases. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly-connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B-cells in multiple assays, while miR-150 and miR-26a are downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNAs involved in both malignancy and immunity

    Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer

    Get PDF
    Objective To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. Design FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. Results FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. Conclusions Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients. © 2020 BMJ Publishing Group. All rights reserved
    corecore