3 research outputs found

    Substantial carbon loss respired from a corn-soybean agroecosystem highlights the importance of careful management as we adapt to changing climate

    Get PDF
    Understanding agroecosystem carbon (C) cycle response to climate change and management is vital for maintaining their long-term C storage. We demonstrate this importance through an in-depth examination of a ten-year eddy covariance dataset from a corn-corn-soybean crop rotation grown in the Midwest United States. Ten-year average annual net ecosystem exchange (NEE) showed a net C sink of -0.39 Mg C ha-1 yr-1. However, NEE in 2014 and 2015 from the corn ecosystem was 3.58 and 2.56 Mg C ha-1 yr-1, respectively. Most C loss occurred during the growing season, when photosynthesis should dominate and C fluxes should reflect a net ecosystem gain. Partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (ER) showed this C \u27burp\u27 was driven by higher ER, with a 51% (2014) and 57% (2015) increase from the ten-year average (15.84 Mg C ha-1 yr-1). GPP was also higher than average (16.24 Mg C ha-1 yr-1) by 25% (2014) and 37% (2015), but this was not enough to offset the C emitted from ER. This increased ER was likely driven by enhanced soil microbial respiration associated with ideal growing season climate, substrate availability, nutrient additions, and a potential legacy effect from drought

    Ecosystem-scale biogeochemical fluxes from three bioenergy crop candidates: How energy sorghum compares to maize and miscanthus

    Get PDF
    Perennial crops have been the focus of bioenergy research and development for their sustainability benefits associated with high soil carbon (C) and reduced nitrogen (N) requirements. However, perennial crops mature over several years and their sustainability benefits can be negated through land reversion. A photoperiod-sensitive energy sorghum (Sorghum bicolor) may provide an annual crop alternative more ecologically sustainable than maize (Zea mays) that can more easily integrate into crop rotations than perennials, such as miscanthus (Miscanthus × giganteus). This study presents an ecosystem-scale comparison of C, N, water and energy fluxes from energy sorghum, maize and miscanthus during a typical growing season in the Midwest United States. Gross primary productivity (GPP) was highest for maize during the peak growing season at 21.83 g C m−2 day−1, followed by energy sorghum (17.04 g C m−2 day−1) and miscanthus (15.57 g C m−2 day−1). Maize also had the highest peak growing season evapotranspiration at 5.39 mm day−1, with energy sorghum and miscanthus at 3.81 and 3.61 mm day−1, respectively. Energy sorghum was the most efficient water user (WUE), while maize and miscanthus were comparatively similar (3.04, 1.75 and 1.89 g C mm−1 H2O, respectively). Maize albedo was lower than energy sorghum and miscanthus (0.19, 0.26 and 0.24, respectively), but energy sorghum had a Bowen ratio closer to maize than miscanthus (0.12, 0.13 and 0.21, respectively). Nitrous oxide (N2O) flux was higher from maize and energy sorghum (8.86 and 12.04 kg N ha−1, respectively) compared with miscanthus (0.51 kg N ha−1), indicative of their different agronomic management. These results are an important first look at how energy sorghum compares to maize and miscanthus grown in the Midwest United States. This quantitative assessment is a critical component for calibrating biogeochemical and ecological models used to forecast bioenergy crop growth, productivity and sustainability
    corecore