3,429 research outputs found
Zero-energy states in graphene quantum dots and rings
We present exact analytical zero-energy solutions for a class of smooth
decaying potentials, showing that the full confinement of charge carriers in
electrostatic potentials in graphene quantum dots and rings is indeed possible
without recourse to magnetic fields. These exact solutions allow us to draw
conclusions on the general requirements for the potential to support fully
confined states, including a critical value of the potential strength and
spatial extent.Comment: 8 pages, 3 figures, references added, typos corrected, discussion
section expande
Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation
Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm
Characterization of solar cells for space applications. Volume 8: Electrical characteristics of Spectrolab BSF, BSR, textured 290-micron solar cells (K7) as a function of intensity, temperature and irradiation
A set of parametric data is presented on the Spectrolab textured, back-surface-field, back-surface-reflector solar cell which is a commercially available product
Characterization of solar cells for space applications. Volume 12: Electrical characteristics of Solarex BSF, 2-ohm-cm, 50-micron solar cells (1978 pilot line) as a function of intensity, temperature, and irradiation
Electrical characteristics of Solarex back-surface-field, 2-ohm-cm, 50-micron N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity, temperature, and irradiation
Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature
Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature
Bonding machine for forming a solar array strip
A machine is described for attaching solar cells to a flexable substrate on which printed circuitry has been deposited. The strip is fed through: (1) a station in which solar cells are elevated into engagement with solder pads for the printed circuitry and thereafter heated by an infrared lamp; (2) a station at which flux and solder residue is removed; (3) a station at which electrical performance of the soldered cells is determined; (4) a station at which an encapsulating resin is deposited on the cells; (5) a station at which the encapsulated solar cells are examined for electrical performance; and (6) a final station at which the resulting array is wound on a takeup drum
- …