2,640 research outputs found

    Volt-ampere characteristics of cylindrical and spherical Langmuir probes for various potential models Scientific report

    Get PDF
    Volt-ampere characteristics of cylindrical and spherical Langmuir probes for various potential model

    Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies

    Get PDF
    INTRODUCTION: Administration of mesenchymal stem cells (MSCs) has been shown to improve renal function in rodent models of chronic kidney disease (CKD), in part by reducing intrarenal inflammation and suppressing fibrosis. CKD in cats is characterized by tubulointerstitial inflammation and fibrosis, and thus treatment with MSCs might improve renal function and urinary markers of inflammation in this disease. Therefore, a series of pilot studies was conducted to assess the safety and efficacy of intravenous administration of allogeneic adipose-derived MSCs (aMSCs) in cats with naturally occurring CKD. METHODS: Cats enrolled in these studies received an intravenous infusion of allogeneic aMSCs every 2 weeks collected from healthy, young, specific pathogen-free cats. Cats in pilot study 1 (six cats) received 2 × 10(6) cryopreserved aMSCs per infusion, cats in pilot study 2 (five cats) received 4 × 10(6) cryopreserved aMSCs per infusion, and cats in pilot study 3 (five cats) received 4 × 10(6) aMSCs cultured from cryopreserved adipose. Serum biochemistry, complete blood count, urinalysis, urine protein, glomerular filtration rate, and urinary cytokine concentrations were monitored during the treatment period. Changes in clinical parameters were compared statistically by means of repeated measures analysis of variance (ANOVA) followed by Bonferroni’s correction. RESULTS: Cats in pilot study 1 had few adverse effects from the aMSC infusions and there was a statistically significant decrease in serum creatinine concentrations during the study period, however the degree of decrease seems unlikely to be clinically relevant. Adverse effects of the aMSC infusion in cats in pilot study 2 included vomiting (2/5 cats) during infusion and increased respiratory rate and effort (4/5 cats). Cats in pilot study 3 did not experience any adverse side effects. Serum creatinine concentrations and glomerular filtration rates did not change significantly in cats in pilot studies 2 and 3. CONCLUSIONS: Administration of cryopreserved aMSCs was associated with significant adverse effects and no discernible clinically relevant improvement in renal functional parameters. Administration of aMSCs cultured from cryopreserved adipose was not associated with adverse effects, but was also not associated with improvement in renal functional parameters

    Cannons to Spark Thermal-Fluid Canons

    Get PDF
    Hands-on projects are launch pads for sparking student interest. Specifically, design-build-test (DBT) projects can be effective tools for boosting students’ confidence in their ability to apply theoretical knowledge to practical engineering. Recognizing the need for relating the theoretical aspects of thermodynamics to its application, an air cannon design-build-test project was envisioned and implemented. Air cannons can be simple and inexpensive to construct, while offering a robust platform to explore thermodynamics, heat transfer, and fluid mechanics concepts. At the same time, the ability to launch projectiles from the cannons carries an obvious appeal for many students. An air cannon design project was integrated towards the beginning of a year-long thermal-fluid sciences course series. The primary aim of the project was for student teams to study how air cannons function and subsequently design a prototype that fits “customer” specifications. Each team constructed their cannons using PVC piping to launch acetal plastic projectiles. Students were additionally required to design a functional release valve mechanism to trigger the projectile launch. To aid in evaluation of their designs, students were introduced to a numerical-analytical modeling approach to explain air cannon behavior using principles of linear momentum conservation and ideal gas thermodynamics theory. Among other metrics, the performance of each student team was assessed based on (1) the ability of the custom trigger mechanism to fire the cannon over a range of initial reservoir pressures, (2) a thoughtful comparison among experimentally-measured and model-predicted muzzle velocities, and (3) documentation of the results of cannon design, realization, and operation. This paper discusses the implementation and relevant outcomes of the project. Based on student feedback, the project was well-received and anchored the often abstract thermal-fluid sciences concepts taught. The project also highlighted the challenges of applying theoretical equations to real-world problems and the vital need for experiments to improve accuracy of theoretical models. Exposure to this iterative approach to design emphasizes the practical aspects of engineering challenges. Overall, the project served its primary purpose of engaging students with thermodynamics concepts. With minor modifications in implementation, the project can appeal to students with a broader academic focus and experience

    Unusual Prey of Bembix

    Get PDF

    Exact solutions and stability of rotating dipolar Bose-Einstein condensates in the Thomas-Fermi limit

    Get PDF
    We present a theoretical analysis of dilute gas Bose-Einstein condensates with dipolar atomic interactions under rotation in elliptical traps. Working in the Thomas-Fermi limit, we employ the classical hydrodynamic equations to first derive the rotating condensate solutions and then consider their response to perturbations. We thereby map out the regimes of stability and instability for rotating dipolar Bose-Einstein condensates and in the latter case, discuss the possibility of vortex lattice formation. We employ our results to propose several novel routes to induce vortex lattice formation in a dipolar condensate.Comment: 12 pages with 6 figure

    The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality

    Get PDF
    Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object

    A unified approach for the solution of the Fokker-Planck equation

    Full text link
    This paper explores the use of a discrete singular convolution algorithm as a unified approach for numerical integration of the Fokker-Planck equation. The unified features of the discrete singular convolution algorithm are discussed. It is demonstrated that different implementations of the present algorithm, such as global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. Three benchmark stochastic systems, the repulsive Wong process, the Black-Scholes equation and a genuine nonlinear model, are employed to illustrate the robustness and to test accuracy of the present approach for the solution of the Fokker-Planck equation via a time-dependent method. An additional example, the incompressible Euler equation, is used to further validate the present approach for more difficult problems. Numerical results indicate that the present unified approach is robust and accurate for solving the Fokker-Planck equation.Comment: 19 page

    Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A

    Full text link
    We have measured the critical velocity v_c at which 3He-A in a rotating cylinder becomes unstable against the formation of quantized vortex lines with continuous (singularity-free) core structure. We find that v_c is distributed between a maximum and minimum limit, which we ascribe to a dependence on the texture of the orbital angular momentum l(r) in the cylinder. Slow cool down through T_c in rotation yields l(r) textures for which the measured v_c's are in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure
    corecore