45 research outputs found

    Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established

    Get PDF
    Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes

    Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir

    Get PDF
    Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines

    Therapeutic utility of aspirin in the Apc(Min/+) murine model of colon carcinogenesis

    Get PDF
    BACKGROUND: In recent years it has become evident that nonsteroidal anti-inflammatory drugs, in particular aspirin represent a potential class of cancer chemotherapeutic agents. Despite the wealth of knowledge gained from epidemiological, clinical and animal studies, the effectiveness of aspirin to treat established gastrointestinal cancer has not been determined. The present study examines the ability of aspirin to treat established polyposis in Min/+ mice. METHODS: Min/+ mice with established polyposis were treated orally once daily from 12–16 weeks of age with either drug vehicle or aspirin (25 mg/kg). Upon completion of treatment, the number, location and size of intestinal tumours was determined. Additional variables examined were the number of apoptotic cells within tumours and COX activity. RESULTS: Administration of aspirin for 4 weeks to Min/+ mice produce no effect on tumour number compared to vehicle-treated Min/+ mice (65 ± 8 vs. 63 ± 9, respectively). In addition, aspirin had no effect on tumour size or location. However, aspirin treatment produced a greater than 2-fold (p < 0.05) increase in the number of apoptotic positive cells within tumours and significantly decreased hepatic PGE(2) content. CONCLUSIONS: Aspirin was found to have no effect on tumour number and size when administered to Min/+ mice with established polyposis. The findings in the present study call in to question the utility of aspirin as a stand-alone treatment for established GI cancer. However, aspirin's ability to significantly promote apoptosis may render it suitable for use in combinatorial chemotherapy

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Influenza aerosols in UK hospitals during the H1N1 (2009) pandemic - the risk of aerosol generation during medical procedures

    Get PDF
    With our small sample size we found that AGPs do not significantly increase the probability of sampling an H1N1 (2009) positive aerosol (OR (95% CI)?=?4.31 (0.83-22.5). Although the probability of detecting positive H1N1 (2009) positive aerosols when performing various AGPs on intensive care patients above the baseline rate (i.e. in the absence of AGPs) did not reach significance, there was a trend towards hierarchy of AGPs, placing bronchoscopy and respiratory and airway suctioning above baseline (background) values. Further, larger studies are required but these preliminary findings may be of benefit to infection control teams

    Summary of A/Cal infectivity in nasal washes.

    No full text
    <p>Panel (a) shows ferrets infected with A/Cal on day 0 and treated with 300 µg 244 DI virus (▪) or infected and treated with 300 µg inactivated 244 DI virus (▴); another group was not infected but treated with 300 µg of active 244 DI virus (•). A standard preparation of A/Cal virus was used to normalise titrations carried out on different days. These varied by less than 4-fold. The dotted line is the limit of sensitivity of the assay (1.92 log<sub>10</sub> FFU/ml). Significant reduction in infectivity (by a two-tailed Mann-Whitney U test) in ferrets treated with 244 DI virus is denoted by **. Panels (b) and (c) show details of the statistical analysis on day 2 and 3, respectively.</p

    Statistical analysis of summed clinical signs for each day in ferrets re-challenged with A/Cal.

    No full text
    <p>The group that previously experienced A/Cal+300 ug 244 DI virus (â–ª) is compared with the group that previously experienced only saline (â–´). The p value was determined using a one tailed Mann-Whitney U test.</p

    Changes in weight of ferrets over the course of infection with A/Cal.

    No full text
    <p>Shown is the mean group body weight changes in A/Cal influenza virus-infected ferrets treated with (a) 300 µg 244 DI virus (▪) or inactivated 244 DI virus (▴), (b) 30 µg 244 DI virus (▪) or inactivated 244 DI virus (▴). (c) Shows the weight changes in ferrets inoculated with saline (○) or treated with 300 µg of active 244 DI virus (•). Data are expressed as a percentage change compared to the group average weight at day 0. The statistical significance of body weight changes on any one day was determined by a one tailed unpaired t-test and is indicated by an asterisk (p≤0.05).</p
    corecore