26 research outputs found

    Impact of gonad shielding for AP pelvis on dose and image quality on different female sizes : a phantom study

    Get PDF
    Introduction In clinical practice AP pelvis standard protocols are suitable for average size patients. However, as the average body size has increased over the past decades, radiographers have had to improve their practice in order to ensure that adequate image quality with minimal radiation dose to the patient is achieved. Gonad shielding has been found to be an effective way to reduce the radiation dose to the ovaries. However, the effect of increased body size, or fat thickness, in combination with gonad shielding is unclear. The goal of the study was to investigate the impact of gonad shielding in a phantom of adult female stature with increasing fat thicknesses on SNR (as a measure for image quality) and dose for AP pelvis examination. Methods An adult Alderson female pelvis phantom was imaged with a variety of fat thickness categories as a representation of increasing BMI. 72 images were acquired using both AEC and manual exposure with and without gonad shielding. The radiation dose to the ovaries was measured using a MOSFET system. The relationship between fat thickness, SNR and dose when the AP pelvis was performed with and without shielding was investigated using the Wilcoxon signed rank test. P-values < 0.05 were considered to be statistically significant. Results Ovary dose and SNR remained constant despite the use of gonad shielding while introducing fat layers. Conclusion The ovary dose did not increase with an increase of fat thickness and the image quality was not altered. Implications for practice Based on this phantom study it can be suggested that obese patients can expect the same image quality as average patients while respecting ALARA principle when using adequate protocols

    Prognostic value of coronary CT angiography on long-term follow-up of 6.9 years

    Full text link
    Long term follow-up of coronary CT angiography (CCTA) is scarce. The aim of the present study was to assess the prognostic value of CCTA over a follow-up period of more than 6 years. 218 Patients were included undergoing 64-slice CCTA. Images were analysed with regard to the presence of nonobstructive (<50 %) or obstructive (50 % stenosis) coronary artery disease (CAD). Major adverse cardiovascular events (MACE) were defined as death, nonfatal myocardial infarction or urgent coronary revascularization. CCTA revealed normal coronaries in 49, nonobstructive lesions in 94, and obstructive CAD in 75 patients. During a median follow-up period of 6.9 years, MACE occurred in 45 patients (21 %). Annual MACE rates were 0.3, 2.7, and 6.0 % (p = 0.001), for patients with normal CCTA, nonobstructive, and obstructive CAD, respectively. Multivariate Cox regression analysis identified the number of segments with plaques [hazard ratio (HR) 1.18, p = 0.002] as well as the presence of obstructive lesions (HR 2.28, p = 0.036) as independent predictors of MACE. The present study extends the predictive value of CCTA over more than 6 years. Patients with normal coronary arteries of CCTA continue to have an excellent cardiac prognosis, while outcome is progressively worse in patients with nonobstructive and obstructive CAD

    Assessment of Artificial Intelligence in Echocardiography Diagnostics in Differentiating Takotsubo Syndrome From Myocardial Infarction

    No full text
    IMPORTANCE Machine learning algorithms enable the automatic classification of cardiovascular diseases based on raw cardiac ultrasound imaging data. However, the utility of machine learning in distinguishing between takotsubo syndrome (TTS) and acute myocardial infarction (AMI) has not been studied.Objectives To assess the utility of machine learning systems for automatic discrimination of TTS and AMI.Design, Settings, and Participants This cohort study included clinical data and transthoracic echocardiogram results of patients with AMI from the Zurich Acute Coronary Syndrome Registry and patients with TTS obtained from 7 cardiovascular centers in the International Takotsubo Registry. Data from the validation cohort were obtained from April 2011 to February 2017. Data from the training cohort were obtained from March 2017 to May 2019. Data were analyzed from September 2019 to June 2021.Exposure Transthoracic echocardiograms of 224 patients with TTS and 224 patients with AMI were analyzed.Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the machine learning system evaluated on an independent data set and 4 practicing cardiologists for comparison. Echocardiography videos of 228 patients were used in the development and training of a deep learning model. The performance of the automated echocardiogram video analysis method was evaluated on an independent data set consisting of 220 patients. Data were matched according to age, sex, and ST-segment elevation/non-ST-segment elevation (1 patient with AMI for each patient with TTS). Predictions were compared with echocardiographic-based interpretations from 4 practicing cardiologists in terms of sensitivity, specificity, and AUC calculated from confidence scores concerning their binary diagnosis.Results In this cohort study, apical 2-chamber and 4-chamber echocardiographic views of 110 patients with TTS (mean [SD] age, 68.4 [12.1] years; 103 [90.4%] were female) and 110 patients with AMI (mean [SD] age, 69.1 [12.2] years; 103 [90.4%] were female) from an independent data set were evaluated. This approach achieved a mean (SD) AUC of 0.79 (0.01) with an overall accuracy of 74.8 (0.7%). In comparison, cardiologists achieved a mean (SD) AUC of 0.71 (0.03) and accuracy of 64.4 (3.5%) on the same data set. In a subanalysis based on 61 patients with apical TTS and 56 patients with AMI due to occlusion of the left anterior descending coronary artery, the model achieved a mean (SD) AUC score of 0.84 (0.01) and an accuracy of 78.6 (1.6%), outperforming the 4 practicing cardiologists (mean [SD] AUC, 0.72 [0.02]) and accuracy of 66.9 (2.8%).Conclusions and Relevance In this cohort study, a real-time system for fully automated interpretation of echocardiogram videos was established and trained to differentiate TTS from AMI. While this system was more accurate than cardiologists in echocardiography-based disease classification, further studies are warranted for clinical application

    Assessment of Artificial Intelligence in Echocardiography Diagnostics in Differentiating Takotsubo Syndrome From Myocardial Infarction

    No full text
    IMPORTANCE Machine learning algorithms enable the automatic classification of cardiovascular diseases based on raw cardiac ultrasound imaging data. However, the utility of machine learning in distinguishing between takotsubo syndrome (TTS) and acute myocardial infarction (AMI) has not been studied.Objectives To assess the utility of machine learning systems for automatic discrimination of TTS and AMI.Design, Settings, and Participants This cohort study included clinical data and transthoracic echocardiogram results of patients with AMI from the Zurich Acute Coronary Syndrome Registry and patients with TTS obtained from 7 cardiovascular centers in the International Takotsubo Registry. Data from the validation cohort were obtained from April 2011 to February 2017. Data from the training cohort were obtained from March 2017 to May 2019. Data were analyzed from September 2019 to June 2021.Exposure Transthoracic echocardiograms of 224 patients with TTS and 224 patients with AMI were analyzed.Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity of the machine learning system evaluated on an independent data set and 4 practicing cardiologists for comparison. Echocardiography videos of 228 patients were used in the development and training of a deep learning model. The performance of the automated echocardiogram video analysis method was evaluated on an independent data set consisting of 220 patients. Data were matched according to age, sex, and ST-segment elevation/non-ST-segment elevation (1 patient with AMI for each patient with TTS). Predictions were compared with echocardiographic-based interpretations from 4 practicing cardiologists in terms of sensitivity, specificity, and AUC calculated from confidence scores concerning their binary diagnosis.Results In this cohort study, apical 2-chamber and 4-chamber echocardiographic views of 110 patients with TTS (mean [SD] age, 68.4 [12.1] years; 103 [90.4%] were female) and 110 patients with AMI (mean [SD] age, 69.1 [12.2] years; 103 [90.4%] were female) from an independent data set were evaluated. This approach achieved a mean (SD) AUC of 0.79 (0.01) with an overall accuracy of 74.8 (0.7%). In comparison, cardiologists achieved a mean (SD) AUC of 0.71 (0.03) and accuracy of 64.4 (3.5%) on the same data set. In a subanalysis based on 61 patients with apical TTS and 56 patients with AMI due to occlusion of the left anterior descending coronary artery, the model achieved a mean (SD) AUC score of 0.84 (0.01) and an accuracy of 78.6 (1.6%), outperforming the 4 practicing cardiologists (mean [SD] AUC, 0.72 [0.02]) and accuracy of 66.9 (2.8%).Conclusions and Relevance In this cohort study, a real-time system for fully automated interpretation of echocardiogram videos was established and trained to differentiate TTS from AMI. While this system was more accurate than cardiologists in echocardiography-based disease classification, further studies are warranted for clinical application.Cardiolog
    corecore