560 research outputs found

    Euclid preparation. XX. The Complete Calibration of the Color-Redshift Relation survey: LBT observations and data release

    Full text link
    The Complete Calibration of the Color–Redshift Relation survey (C3R2) is a spectroscopic program designed to empirically calibrate the galaxy color–redshift relation to the Euclid depth (IE_{E} = 24.5), a key ingredient for the success of Stage IV dark energy projects based on weak lensing cosmology. A spectroscopic calibration sample that is as representative as possible of the galaxies in the Euclid weak lensing sample is being collected, selecting galaxies from a self-organizing map (SOM) representation of the galaxy color space. Here, we present the results of a near-infrared H- and K-band spectroscopic campaign carried out using the LUCI instruments at the LBT. For a total of 251 galaxies, we present new highly reliable redshifts in the 1.3 ≤ z ≤ 1.7 and 2 ≤ z ≤ 2.7 ranges. The newly-determined redshifts populate 49 SOM cells that previously contained no spectroscopic measurements and almost twice the occupation numbers of an additional 153 SOM cells. A final optical ground-based observational effort is needed to calibrate the missing cells, in particular in the redshift range 1.7 ≤ z ≤ 2.7, which lack spectroscopic calibration. In the end, Euclid itself will deliver telluric-free near-IR spectra that can complete the calibration

    Effects of Random External Background Stimulation on Network Synaptic Stability After Tetanization: A Modeling Study

    Get PDF
    We constructed a simulated spiking neural network model to investigate the effects of random background stimulation on the dynamics of network activity patterns and tetanus induced network plasticity. The simulated model was a “leaky integrate-and-fire” (LIF) neural model with spike-timing-dependent plasticity (STDP) and frequency-dependent synaptic depression. Spontaneous and evoked activity patterns were compared with those of living neuronal networks cultured on multielectrode arrays. To help visualize activity patterns and plasticity in our simulated model, we introduced new population measures called Center of Activity (CA) and Center of Weights (CW) to describe the spatio-temporal dynamics of network-wide firing activity and network-wide synaptic strength, respectively. Without random background stimulation, the network synaptic weights were unstable and often drifted after tetanization. In contrast, with random background stimulation, the network synaptic weights remained close to their values immediately after tetanization. The simulation suggests that the effects of tetanization on network synaptic weights were difficult to control because of ongoing synchronized spontaneous bursts of action potentials, or “barrages.” Random background stimulation helped maintain network synaptic stability after tetanization by reducing the number and thus the influence of spontaneous barrages. We used our simulated network to model the interaction between ongoing neural activity, external stimulation and plasticity, and to guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems or “hybrots.

    Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey

    Full text link
    Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg2^{2} area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1–5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods. This study is based on ∼176 000 real galaxies at z = 1–8 in a ∼0.7 deg2^{2} area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1–5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (IE_{E} − YE_{E}) > 2.8 and (YE_{E} − JE_{E})  6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (IE_{E} − YE_{E}) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%

    MEART: The Semi-Living Artist

    Get PDF
    Here, we and others describe an unusual neurorobotic project, a merging of art and science called MEART, the semi-living artist. We built a pneumatically actuated robotic arm to create drawings, as controlled by a living network of neurons from rat cortex grown on a multi-electrode array (MEA). Such embodied cultured networks formed a real-time closed-loop system which could now behave and receive electrical stimulation as feedback on its behavior. We used MEART and simulated embodiments, or animats, to study the network mechanisms that produce adaptive, goal-directed behavior. This approach to neural interfacing will help instruct the design of other hybrid neural-robotic systems we call hybrots. The interfacing technologies and algorithms developed have potential applications in responsive deep brain stimulation systems and for motor prosthetics using sensory components. In a broader context, MEART educates the public about neuroscience, neural interfaces, and robotics. It has paved the way for critical discussions on the future of bio-art and of biotechnology

    Restoration of Aspen-Dominated Ecosystems in the Lake States

    Get PDF
    A reserve tree method (RTM) of harvesting was installed in six 70 to 75 year old aspen dominated stands to determine if retaining 10 to 15 dominant aspen per acre would decrease sucker density to facilitate restoration of a conifer component. A reserve shelterwood cut was applied to three additional stands to evaluate performance of white pine planted under 50% crown cover. After the first full growing season following harvest, 96% of the RTM harvested areas were stocked; sucker density averaged 27000 per acre versus 38.2 k per acre on a clearcut control, 41% greater. Basal diameter of dominant suckers averaged 0.45 inch, 28% greater than the control, and mean height was 60 inches, 33% greater. The control site had 3.1k stems per acre of associated commercial species versus 5.8 k on the RTM sites, an 87% difference. Four of the nine stands have been planted; first-year survival ranged from 75% to near 100%. The RTM shows promise for reducing sucker density, increasing their early growth, maintaining species diversity, and providing abundant regeneration of commercial species on a high proportion of the areas harvested. Early results indicate that both the RTM and shelterwood methods can facilitate restoring a component of native conifer species in these ecosystems

    The Prevalence of Secondary School Sport Safety Policies within State Athletic Associations and Legislation

    Get PDF
    Purpose: The location of secondary school health and safety policies impacts how they are implemented by the sports medicine team and stakeholders. Yet, a comprehensive list of each state’s policy locations has not been established. The purpose of this study was to describe where secondary school health and safety policies were located at the state level within the United States. Method: Emergency related health and safety policies were designated as either being located in the state high school athletics association (SHSAA), state legislation (LEGIS), or in both SHSAA and LEGIS (BOTH). Designation was determined by two researchers who independently reviewed each individual policy. Frequencies were tabulated for the leading causes of catastrophic injury (exertional heat stroke (EHS), traumatic head injuries (THI), sudden cardiac arrest (SCA), and emergency preparedness (EP)) for the distribution of policies emanating from SHSSA, LEGIS or BOTH. Prevalence ratios (PRs) with 95% confidence intervals (CIs) were calculated between the policies categories and location. Results: Most (99.35%) EHS and EP (83.02%) policies were found in SHSAA. Whereas the majority (79.70%) of SCA policies were found in LEGIS. Traumatic head injuries were most frequently observed in SHSAA, however, had the greatest distribution across all three categories (SHSAA=45.31%, LEGIS=25.52%, BOTH = 29.16%). The category that most frequently found policies in BOTH was THI (THI= 29.16%, all others =2.25%; PR=12.96; 95% CI=7.81, 21.53). Conclusions: Emergency related health and safety policies for secondary school sports are commonly found in SHSAA. TBI and SCA are also found in LEGIS. This demonstrates great variability of policy locations

    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme

    Get PDF
    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning
    corecore