18,674 research outputs found

    Hypervelocity runaways from the Large Magellanic Cloud

    Full text link
    We explore the possibility that the observed population of Galactic hypervelocity stars (HVSs) originate as runaway stars from the Large Magellanic Cloud (LMC). Pairing a binary evolution code with an N-body simulation of the interaction of the LMC with the Milky Way, we predict the spatial distribution and kinematics of an LMC runaway population. We find that runaway stars from the LMC can contribute Galactic HVSs at a rate of 3×10−6  yr−13 \times 10^{-6}\;\mathrm{yr}^{-1}. This is composed of stars at different points of stellar evolution, ranging from the main-sequence to those at the tip of the asymptotic giant branch. We find that the known B-type HVSs have kinematics which are consistent with an LMC origin. There is an additional population of hypervelocity white dwarfs whose progenitors were massive runaway stars. Runaways which are even more massive will themselves go supernova, producing a remnant whose velocity will be modulated by a supernova kick. This latter scenario has some exotic consequences, such as pulsars and supernovae far from star-forming regions, and a small rate of microlensing from compact sources around the halo of the LMC.Comment: MNRAS, in pres

    Dual WDVV Equations in N=2 Supersymmetric Yang-Mills Theory

    Get PDF
    This paper studies the dual form of Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations in N=2 supersymmetric Yang-Mills theory by applying a duality transformation to WDVV equations. The dual WDVV equations called in this paper are non-linear differential equations satisfied by dual prepotential and are found to have the same form with the original WDVV equations. However, in contrast with the case of weak coupling calculus, the perturbative part of dual prepotential itself does not satisfy the dual WDVV equations. Nevertheless, it is possible to show that the non-perturbative part of dual prepotential can be determined from dual WDVV equations, provided the perturbative part is given. As an example, the SU(4) case is presented. The non-perturbative dual prepotential derived in this way is consistent to the dual prepotential obtained by D'Hoker and Phong.Comment: misprints are corrected, revtex, 10 page

    Interaction of Close-in Planets with the Magnetosphere of their Host Stars I: Diffusion, Ohmic Dissipation of Time Dependent Field, Planetary Inflation, and Mass Loss

    Full text link
    The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.Comment: 47 pages, 12 figure

    On the evolutionary behaviour of BL Lac objects

    Get PDF
    We present a new well defined sample of BL Lac objects selected from the ROSAT All-Sky Survey (RASS). The sample consists of 39 objects with 35 forming a flux limited sample down to f_X = 8 x 10^{-13} cgs, redshifts are known for 33 objects (and 31 of the complete sample). X-ray spectral properties were determined for each object individually with the RASS data. The luminosity function of RASS selected BL Lac objects is compatible with results provided by objects selected with the Einstein observatory, but the RASS selected sample contains objects with luminosities at least tenfold higher. Our analysis confirms the negative evolution for X-ray selected BL Lac objects found in a sample by the Einstein observatory, the parameterization provides similar results. A subdivision of the sample into halves according to the X-ray to optical flux ratio yielded unexpected results. The extremely X-ray dominated objects have higher redshifts and X-ray luminosities and only this subgroup shows clear signs of strong negative evolution. The evolutionary behaviour of objects with an intermediate spectral energy distribution between X-ray and radio dominated is compatible with no evolution at all. Consequences for unified schemes of X-ray and radio selected BL Lac objects are discussed.We suggest that the intermediate BL Lac objects are the basic BL Lac population. The distinction between the two subgroups can be explained if extreme X-ray dominated BL Lac objects are observed in a state of enhanced X-ray activity.Comment: 14 pages incl. 8 figures, accepted by A&

    Regularization of Non-commutative SYM by Orbifolds with Discrete Torsion and SL(2,Z) Duality

    Full text link
    We construct a nonperturbative regularization for Euclidean noncommutative supersymmetric Yang-Mills theories with four (N= (2,2)), eight (N= (4,4)) and sixteen (N= (8,8)) supercharges in two dimensions. The construction relies on orbifolds with discrete torsion, which allows noncommuting space dimensions to be generated dynamically from zero dimensional matrix model in the deconstruction limit. We also nonperturbatively prove that the twisted topological sectors of ordinary supersymmetric Yang-Mills theory are equivalent to a noncommutative field theory on the topologically trivial sector with reduced rank and quantized noncommutativity parameter. The key point of the proof is to reinterpret 't Hooft's twisted boundary condition as an orbifold with discrete torsion by lifting the lattice theory to a zero dimensional matrix theory.Comment: 36 pages, references added, minor typos fixe

    Can we avoid dark energy?

    Full text link
    The idea that we live near the centre of a large, nonlinear void has attracted attention recently as an alternative to dark energy or modified gravity. We show that an appropriate void profile can fit both the latest cosmic microwave background and supernova data. However, this requires either a fine-tuned primordial spectrum or a Hubble rate so low as to rule these models out. We also show that measurements of the radial baryon acoustic scale can provide very strong constraints. Our results present a serious challenge to void models of acceleration.Comment: 5 pages, 4 figures; minor changes; version published in Phys. Rev. Let

    M\"obius and twisted graphene nanoribbons: stability, geometry and electronic properties

    Full text link
    Results of classical force field geometry optimizations for twisted graphene nanoribbons with a number of twists NtN_t varying from 0 to 7 (the case NtN_t=1 corresponds to a half-twist M\"obius nanoribbon) are presented in this work. Their structural stability was investigated using the Brenner reactive force field. The best classical molecular geometries were used as input for semiempirical calculations, from which the electronic properties (energy levels, HOMO, LUMO orbitals) were computed for each structure. CI wavefunctions were also calculated in the complete active space framework taking into account eigenstates from HOMO-4 to LUMO+4, as well as the oscillator strengths corresponding to the first optical transitions in the UV-VIS range. The lowest energy molecules were found less symmetric than initial configurations, and the HOMO-LUMO energy gaps are larger than the value found for the nanographene used to build them due to electronic localization effects created by the twisting. A high number of twists leads to a sharp increase of the HOMO →\to LUMO transition energy. We suggest that some twisted nanoribbons could form crystals stabilized by dipolar interactions

    Origin of broad polydispersion in functionalized dendrimers and its effects on cancer cell binding affinity

    Full text link
    Nanoparticles with multiple ligands have been proposed for use in nanomedicine. The multiple targeting ligands on each nanoparticle can bind to several locations on a cell surface facilitating both drug targeting and uptake. Experiments show that the distribution of conjugated ligands is unexpectedly broad, and the desorption rate appears to depends exponentially upon the mean number of attached ligands. These two findings are explained with a model in which ligands conjugate to the nanoparticle with a positive cooperativity of ≈4kT\approx 4kT, and that nanoparticles bound to a surface by multiple bonds are permanently affixed. This drives new analysis of the data, which confirms that there is only one time constant for desorption, that of a nanoparticle bound to the surface by a single bond.Comment: 4 pages, with 6 figure
    • …
    corecore