736 research outputs found
Systematic review of high-intensity focused ultrasound ablation in the treatment of breast cancer
Background A systematic review was undertaken to assess the clinical efficacy of non-invasive high-intensity focused ultrasound (HIFU) ablation in the treatment of breast cancer. Methods MEDLINE/PubMed library databases were used to identify all studies published up to December 2013 that evaluated the role of HIFU ablation in the treatment of breast cancer. Studies were eligible if they were performed on patients with breast cancer and objectively recorded at least one clinical outcome measure of response (imaging, histopathological or cosmetic) to HIFU treatment. Results Nine studies fulfilled the inclusion criteria. The absence of tumour or residual tumour after treatment was reported for 95·8 per cent of patients (160 of 167). No residual tumour was found in 46·2 per cent (55 of 119; range 17-100 per cent), less than 10 per cent residual tumour in 29·4 per cent (35 of 119; range 0-53 per cent), and between 10 and 90 per cent residual tumour in 22·7 per cent (27 of 119; range 0-60 per cent). The most common complication associated with HIFU ablation was pain (40·1 per cent) and less frequently oedema (16·8 per cent), skin burn (4·2 per cent) and pectoralis major injury (3·6 per cent). MRI showed an absence of contrast enhancement after treatment in 82 per cent of patients (31 of 38; range 50-100 per cent), indicative of coagulative necrosis. Correlation of contrast enhancement on pretreatment and post-treatment MRI successfully predicted the presence of residual disease. Conclusion HIFU treatment can induce coagulative necrosis in breast cancers. Complete ablation has not been reported consistently on histopathology and no imaging modality has been able confidently to predict the percentage of complete ablation. Consistent tumour and margin necrosis with reliable follow-up imaging are required before HIFU ablation can be evaluated within large, prospective clinical trials. Many questions remai
Pulse Oximetry as an Aid to Rule Out Pneumonia among Patients with a Lower Respiratory Tract Infection in Primary Care.
Guidelines recommend chest X-rays (CXRs) to diagnose pneumonia and guide antibiotic treatment. This study aimed to identify clinical predictors of pneumonia that are visible on a chest X-ray (CXR+) which could support ruling out pneumonia and avoiding unnecessary CXRs, including oxygen saturation. A secondary analysis was performed in a clinical trial that included patients with suspected pneumonia in Swiss primary care. CXRs were reviewed by two radiologists. We evaluated the association between clinical signs (heart rate > 100/min, respiratory rate ≥ 24/min, temperature ≥ 37.8 °C, abnormal auscultation, and oxygen saturation < 95%) and CXR+ using multivariate analysis. We also calculated the diagnostic performance of the associated clinical signs combined in a clinical decision rule (CDR), as well as a CDR derived from a large meta-analysis (at least one of the following: heart rate > 100/min, respiratory rate ≥ 24/min, temperature ≥ 37.8 °C, or abnormal auscultation). Out of 469 patients from the initial trial, 107 had a CXR and were included in this study. Of these, 26 (24%) had a CXR+. We found that temperature and oxygen saturation were associated with CXR+. A CDR based on the presence of either temperature ≥ 37.8 °C and/or an oxygen saturation level < 95% had a sensitivity of 69% and a negative likelihood ratio (LR-) of 0.45. The CDR from the meta-analysis had a sensitivity of 92% and an LR- of 0.37. The addition of saturation < 95% to this CDR increased the sensitivity (96%) and decreased the LR- (0.21). In conclusion, this study suggests that pulse oximetry could be added to a simple CDR to decrease the probability of pneumonia to an acceptable level and avoid unnecessary CXRs
T Cell Cross-Reactivity and Conformational Changes during TCR Engagement
All thymically selected T cells are inherently cross-reactive, yet many data indicate a fine specificity in antigen recognition, which enables virus escape from immune control by mutation in infections such as the human immunodeficiency virus (HIV). To address this paradox, we analyzed the fine specificity of T cells recognizing a human histocompatibility leukocyte antigen (HLA)-A2–restricted, strongly immunodominant, HIV gag epitope (SLFNTVATL). The majority of 171 variant peptides tested bound HLA-A2, but only one third were recognized. Surprisingly, one recognized variant (SLYNTVATL) showed marked differences in structure when bound to HLA-A2. T cell receptor (TCR) recognition of variants of these two peptides implied that they adopted the same conformation in the TCR–peptide–major histocompatibility complex (MHC) complex. However, the on-rate kinetics of TCR binding were identical, implying that conformational changes at the TCR–peptide–MHC binding interface occur after an initial permissive antigen contact. These findings have implications for the rational design of vaccines targeting viruses with unstable genomes
System-wide Analysis of the T Cell Response
SummaryThe T cell receptor (TCR) controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones) are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses
CD4+ T Cell Depletion during all Stages of HIV Disease Occurs Predominantly in the Gastrointestinal Tract
The mechanisms underlying CD4+ T cell depletion in human immunodeficiency virus (HIV) infection are not well understood. Comparative studies of lymphoid tissues, where the vast majority of T cells reside, and peripheral blood can potentially illuminate the pathogenesis of HIV-associated disease. Here, we studied the effect of HIV infection on the activation and depletion of defined subsets of CD4+ and CD8+ T cells in the blood, gastrointestinal (GI) tract, and lymph node (LN). We also measured HIV-specific T cell frequencies in LNs and blood, and LN collagen deposition to define architectural changes associated with chronic inflammation. The major findings to emerge are the following: the GI tract has the most substantial CD4+ T cell depletion at all stages of HIV disease; this depletion occurs preferentially within CCR5+ CD4+ T cells; HIV-associated immune activation results in abnormal accumulation of effector-type T cells within LNs; HIV-specific T cells in LNs do not account for all effector T cells; and T cell activation in LNs is associated with abnormal collagen deposition. Taken together, these findings define the nature and extent of CD4+ T cell depletion in lymphoid tissue and point to mechanisms of profound depletion of specific T cell subsets related to elimination of CCR5+ CD4+ T cell targets and disruption of T cell homeostasis that accompanies chronic immune activation
Decreased level of recent thymic emigrants in CD4+ and CD8+T cells from CML patients
<p>Abstract</p> <p>Background</p> <p>T-cell immunodeficiency is a common feature in cancer patients, which may relate to initiation and development of tumor. Based on our previous finding, to further characterize the immune status, T cell proliferative history was analyzed in CD4+ and CD8+ T cells from chronic myeloid leukemia (CML) patients.</p> <p>Methods</p> <p>Quantitative analysis of δRec-ψJα signal joint T cell receptor excision circles (sjTRECs) was performed in PBMCs, CD3+, CD4+ and CD8+T cells by real-time PCR, and the analysis of 23 <it>TRBV-D1 </it>sjTRECs was performed by semi-nested PCR. Forty eight CML cases in chronic phase (CML-CP) were selected for this study and 17 healthy individuals served as controls.</p> <p>Results</p> <p>The levels of δRec-ψJα sjTRECs in PBMCs, CD3+, CD4+, and CD8+ T cells were significantly decreased in CML patients, compared with control groups. Moreover, the numbers of detectable <it>TRBV </it>subfamily sjTRECs, as well as the frequency of particular <it>TRBV-BD</it>1 sjTRECs in patients with CML were significantly lower than those from healthy individuals.</p> <p>Conclusions</p> <p>We observed decreased levels of recent thymic emigrants in CD4+ and CD8+ T cells that may underlay the persistent immunodeficiency in CML patients.</p
SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell–mediated efficacy against SIV
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation
The role of CD4+ T cells in the control of persistent viral infections beyond the provision of cognate help remains unclear. We used polychromatic flow cytometry to evaluate the production of the cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2, the chemokine macrophage inflammatory protein (MIP)-1β, and surface mobilization of the degranulation marker CD107a by CD4+ T cells in response to stimulation with cytomegalovirus (CMV)-specific major histocompatibility complex class II peptide epitopes. Surface expression of CD45RO, CD27, and CD57 on responding cells was used to classify CD4+ T cell maturation. The functional profile of virus-specific CD4+ T cells in chronic CMV infection was unique compared with that observed in other viral infections. Salient features of this profile were: (a) the simultaneous production of MIP-1β, TNF-α, and IFN-γ in the absence of IL-2; and (b) direct cytolytic activity associated with surface mobilization of CD107a and intracellular expression of perforin and granzymes. This polyfunctional profile was associated with a terminally differentiated phenotype that was not characterized by a distinct clonotypic composition. Thus, mature CMV-specific CD4+ T cells exhibit distinct functional properties reminiscent of antiviral CD8+ T lymphocytes
- …