19 research outputs found

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits

    Nanotrench for nano and microparticle electrical interconnects

    Get PDF
    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10 4 ) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA. © 2010 IOP Publishing Ltd

    Magnetoresistance signature of resonant states in electromigrated Ni nanocontacts

    Get PDF
    Fundamental insight is reported into magnetoresistance properties of ballistic-type atomic size Ni nanojunctions obtained at low temperatures. Feedback-controlled electromigration was used to reveal the ballistic nature of the transport and stabilize samples of conductance values in the range of G(0) (G(0) = 2e(2)/h). Bias voltage dependent measurements identify a clear magnetoresistance fingerprint of resonant tunneling, revealing that localized states in the nanojunctions can be responsible for nonlinear behavior in the IV curves and the related magnetoresistance properties. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576939

    The electronic structure of metal/alkane thiol self-assembled monolayers/metal junctions for magnetoelectronics applications

    Get PDF
    Long-chain alkane thiols use in metal to organic self-assembled monolayer to metal junctions may be limited by orientational disorder, and photoemission studies suggest that several molecular layers may be needed for the dielectric layer to be effective. Several alkane thiols were investigated in a range of junctions areas 10–102 μm2. Top layer contact deposition, activated with Pd clusters resulted in a high yield of junctions that were not electrically shorted and are stable over a wide temperature range. Zerobias anomalies, observed at low temperatures, are attributed to a Coulomb blockade associated with the Pd clusters

    Multi-state and non-volatile control of graphene conductivity with surface electric fields

    Get PDF
    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene conductivity illustrates the possibility of multimemory and multifunctional applications, as top and bottom inputs remain accessible. (C) 2015 AIP Publishing LLC

    Magnetoconductance anisotropy of a polymer thin film at the onset of metallicity

    Get PDF
    Thin films of poly(2,5-bis(3-dodecyl-2-yl)-thieno[3,2-b] thiophene) (C12-PBTTT) polymer under electrolyte gating and doping are investigated as model systems for organic thin films devices approaching the metallic side of a metal-insulator (M-I) transition. For the most doped samples, with an estimated density reaching 8 x 10(20) cm(-3) holes and a conductivity exceeding 1000 S cm(-1), a positive high-field magnetoconductance is found in a limited temperature range window and only when the field is perpendicular to the sample plane. This signature of weak localization, combined with indications of finite zero-temperature conductivity, allows us to identify delocalized metallic-like transport in these thin films, even though the conductivity decreases when cooling down the samples. (C) 2015 AIP Publishing LLC

    Current crowding issues on nanoscale planar organic transistors for spintronic applications

    Get PDF
    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices

    Characterization of the native Cr\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e oxide surface of CrO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Using photoemission and inverse photoemission, we have been able to characterize the Cr2O3 oxide surface of CrO2 thin films. The Cr2O3 surface oxide exhibits a band gap of about 3 eV, although the bulk CrO2 is conducting. The thickness of this insulating Cr2O3 layer is twice the photoelectron escape depth which is about 2 nm thick. The effective Cr2O3 surface layer Debye temperature, describing motion normal to the surface, is about 370 K. From a comparison of CrO2 films grown by different techniques, with different Cr2O3 content, evidence is provided that the CrO2 may polarize the Cr2O3. © 2001 American Institute of Physics. [DOI: 10.1063/1.1416474

    Magnetoresistance in boron carbide junctions

    Get PDF
    Photoemission and electric transport properties of ferromagnet–insulator–ferromagnet junctions with boron carbide (C2B10) dielectric barrier are presented. Using a non-oxide barrier confidence avoids oxidation of the interfaces with the ferromagnetic layers. Photoemission confirms chemical abruptness of the interface. Magnetoresistance ratios reaching 50% are observed at low temperatures, and large nonlinearity in the current–voltage curves show that impurities in the junctions play a key role. © 2003 American Institute of Physics

    Zero-bias anomaly in CrO\u3csub\u3e2\u3c/sub\u3e junctions

    Get PDF
    CrO2 thin films, with crystallites of several microns size, provide the opportunity for the investigation of the intergrain tunneling between a few crystals separated by a 1-2 nm thick Cr2O3 film. A pronounced zero-bias anomaly of the conductance is found at low temperatures. Combined photoemission and inverse photoemission temperature-dependent studies confirm the occurrence of Coulomb blockade. For the strong-tunneling case (R2), the magnetoresistance decreases strongly with bias. For the weak-tunneling case (R\u3e\u3eRQ), the magnetoresistance decreases by a factor two with increasing bias, as predicted by a co-tunneling model
    corecore