36 research outputs found

    A weighted q-gram method for glycan structure classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycobiology pertains to the study of carbohydrate sugar chains, or glycans, in a particular cell or organism. Many computational approaches have been proposed for analyzing these complex glycan structures, which are chains of monosaccharides. The monosaccharides are linked to one another by glycosidic bonds, which can take on a variety of comformations, thus forming branches and resulting in complex tree structures. The <it>q</it>-gram method is one of these recent methods used to understand glycan function based on the classification of their tree structures. This <it>q</it>-gram method assumes that for a certain <it>q</it>, different <it>q</it>-grams share no similarity among themselves. That is, that if two structures have completely different components, then they are completely different. However, from a biological standpoint, this is not the case. In this paper, we propose a weighted <it>q</it>-gram method to measure the similarity among glycans by incorporating the similarity of the geometric structures, monosaccharides and glycosidic bonds among <it>q</it>-grams. In contrast to the traditional <it>q</it>-gram method, our weighted <it>q</it>-gram method admits similarity among <it>q</it>-grams for a certain <it>q</it>. Thus our new kernels for glycan structure were developed and then applied in SVMs to classify glycans.</p> <p>Results</p> <p>Two glycan datasets were used to compare the weighted <it>q</it>-gram method and the original <it>q</it>-gram method. The results show that the incorporation of <it>q</it>-gram similarity improves the classification performance for all of the important glycan classes tested.</p> <p>Conclusion</p> <p>The results in this paper indicate that similarity among <it>q</it>-grams obtained from geometric structure, monosaccharides and glycosidic linkage contributes to the glycan function classification. This is a big step towards the understanding of glycan function based on their complex structures.</p

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    RINGS Bioinformatics

    No full text

    RINGS

    No full text
    corecore