48 research outputs found

    Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia

    Get PDF
    With increasing effects of global climate change, there is a strong interest in developing biofuels from trees such as poplar (Populus sp.) that have high C sequestration rates and relatively low chemical inputs. Using plant-microbe symbiosis to maximize plant growth and increase host stress tolerance may play an important role in improving the economic viability and environmental sustainability of poplar as a feedstock. Based on our previous research, a total of ten endophyte strains were selected as a consortium to investigate the effects of inoculation on commercial hardwood cuttings of Populus deltoides x P. nigra clone OP-367. After one and a half months of growth under non-stress conditions followed by one month under water stress, there was substantial growth promotion with improved leaf physiology of poplar plants in response to the endophyte inoculation. Furthermore, inoculated plants demonstrated reduced damage by reactive oxygen species (ROS) indicating a possible mechanism for symbiosis-mediated drought tolerance. Production of important phytohormones by these endophytes and identification of microbial genes involved in conferring drought tolerance suggests their potential roles in the modulation of the plant host stress response.Fil: Khan, Zareen. University of Washington; Estados UnidosFil: Rho, Hyungmin. University of Washington; Estados UnidosFil: Firrincieli, Andrea. Università degli Studi della Tuscia; ItaliaFil: Hung, Shang Han. University of Washington; Estados UnidosFil: Luna, Maria Virginia. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Investigaciones Agrobiotecnologicas. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Investigaciones Agrobiotecnologicas.; ArgentinaFil: Masciarelli, Oscar Alberto. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; ArgentinaFil: Kim, Soo-Hyung. University of Washington; Estados UnidosFil: Doty, Sharon L.. University of Washington; Estados Unido

    Genomic features of bacterial adaptation to plants

    Get PDF
    Author(s): Levy, A; Salas Gonzalez, I; Mittelviefhaus, M; Clingenpeel, S; Herrera Paredes, S; Miao, J; Wang, K; Devescovi, G; Stillman, K; Monteiro, F; Rangel Alvarez, B; Lundberg, DS; Lu, TY; Lebeis, S; Jin, Z; McDonald, M; Klein, AP; Feltcher, ME; Rio, TG; Grant, SR; Doty, SL; Ley, RE; Zhao, B; Venturi, V; Pelletier, DA; Vorholt, JA; Tringe, SG; Woyke, T; Dangl, JL | Abstract: © 2017 The Author(s). Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe-microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering

    Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

    Get PDF
    Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%∼41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose

    Bacterial Endophyte Colonization and Distribution within Plants

    No full text
    The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes

    Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    No full text
    Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions
    corecore