596 research outputs found

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center

    Full text link
    We have observed the linear polarization of 450 micron continuum emission from the Galactic center, using a new polarimetric detector system that is operated on a 2 m telescope at the South Pole. The resulting polarization map extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and thus covers a significant fraction of the central molecular zone. Our map shows that this region is permeated by large-scale toroidal magnetic fields. We consider our results together with radio observations that show evidence for poloidal fields in the Galactic center, and with Faraday rotation observations. We compare all of these observations with the predictions of a magnetodynamic model for the Galactic center that was proposed in order to explain the Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let

    Choice of resident costimulatory molecule can influence cell fate in human naïve CD4+ T cell differentiation

    Get PDF
    With antigen stimulation, naïve CD4+ T cells differentiate to several effector or memory cell populations, and cytokines contribute to differentiation outcome. Several proteins on these cells receive costimulatory signals, but a systematic comparison of their differential effects on naïve T cell differentiation has not been conducted. Two costimulatory proteins, CD28 and ICAM-1, resident on human naïve CD4+ T cells were compared for participation in differentiation. Under controlled conditions, and with no added cytokines, costimulation through either CD3+CD28 or CD3+ICAM-1 induced differentiation to T effector and T memory cells. In contrast, costimulation through CD3+ICAM-1 induced differentiation to Treg cells whereas costimulation through CD3+CD28 did not

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication

    Initial Characteristics of Kepler Short Cadence Data

    Full text link
    The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres

    Tracking and imaging gamma ray experiment (TIGRE) for 1 to 100 MEV gamma ray astronomy

    Get PDF
    A large international collaboration from the high energy astrophysics community has proposed the Tracking and Imaging Gamma Ray Experiment (TIGRE) for future space observations. TIGRE will image and perform energy spectroscopy measurements on celestial sources of gamma rays in the energy range from 1 to 100 MeV. This has been a difficult energy range experimentally for gamma ray astronomy but is vital for the future considering the recent exciting measurements below 1 and above 100 MeV. TIGRE is both a double scatter Compton and gamma ray pair telescope with direct imaging of individual gamma ray events. Multi‐layers of Si strip detectors are used as Compton and pair converters CsI(Tl) scintillation detectors are used as a position sensitive calorimeter. Alternatively, thick GE strip detectors may be used for the calorimeter. The Si detectors are able to track electrons and positrons through successive Si layers and measure their directions and energy losses. Compton and pair events are completely reconstructed allowing each event to be imaged on the sky. TIGRE will provide an order‐of‐magnitude improvement in discrete source sensitivity in the 1 to 100 MeV energy range and determine spectra with excellent energy and excellent angular resolutions. It’s wide field‐of‐view of π sr permits observations of the entire sky for extended periods of time over the life of the mission

    A survey of anisotropic energetic particle flows observed by STEREO

    Get PDF
    The Low Energy Telescopes (LETs) onboard the twin STEREO spacecraft have been measuring the anisotropies of energetic particles since before the beginning of solar cycle 24. Large unidirectional anisotropies often appear at the onset of magnetically well-connected solar energetic particle (SEP) events, suggesting beamed particles with relatively little scattering. Also, long-lasting bidirectional flows are seen during the decay phase of several SEP events. Some of these instances appear to be within interplanetary coronal mass ejections (ICMEs), as indicated by characteristics such as magnetic field rotations or bidirectional suprathermal electrons. We present preliminary findings from a survey of LET proton anisotropy observations, which illustrate that bidirectional flows appear more likely to come from directions far from the nominal Parker spiral direction than do unidirectional beams, consistent with previous studies. Individual cases that show unusual intensity depletions perpendicular to the magnetic field or pitch angle distributions otherwise indicative of magnetic mirroring are presented in more detail

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic
    corecore