10 research outputs found

    Appropriate indications for positron emission tomography/computed tomography: College of Nuclear Physicians of the Colleges of Medicine of South Africa

    Get PDF
    Individualised patient treatment approaches demand precise determination of initial disease extent combined with early, accurate assessment of response to treatment, which is made possible by positron emission tomography/computed tomography (PET/CT). PET is a non-invasive tool that provides tomographic images and quantitative parameters of perfusion, cell viability, and proliferation and/or metabolic activity of tissues. Fusion of the functional information with the morphological detail provided by CT as PET/CT can provide clinicians with a sensitive and accurate one-step whole-body diagnostic and prognostic tool, which directs and changes patient management. Three large-scale national studies published by the National Oncologic PET Registry in the USA have shown that imaging with PET changes the intended patient management strategy in 36.5% to 49% of cases, with consistent results across all cancer types. The proven clinical effectiveness and growing importance of PET/CT have prompted the College of Nuclear Physicians of South Africa, in collaboration with university hospitals, to develop a list of recommendations on the appropriate use of fluorine-18-fluorodeoxyglucose (18F-FDG) and non-18F-FDG PET/CT in oncology, cardiology, neurology and infection/inflammation. It is expected that other clinical situations will be added to these recommendations, provided that they are based upon solid clinical evidence. These recommendations are intended to offer advice regarding contemporary applications of PET/CT, as well as indicating novel developments and potential future indications. The CNP believes that these recommendations will serve an important and relevant role in advising referring physicians on the appropriate use of 18F-FDG and non-18F-FDG PET/CT. More promising clinical applications will be possible in the future, as newer PET tracers become more readily available

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Role of F-18 FDG PET-CT in neuropsychiatric systemic lupus erythematosus

    No full text
    Background: Neuropsychiatric systemic lupus erythematosus (NPSLE) is a major contributor to morbidity and mortality in systemic lupus erythematosus (SLE) patients. To date no single clinical, laboratory or imaging test has proven accurate for NPSLE diagnosis which is a testament to the intricate and multifactorial pathophysiological mechanisms suspected to exist. Functional imaging with FDG PET-CT has shown promise in NPSLE diagnosis, detecting abnormalities prior to changes evident on anatomical imaging. Research indicates that NPSLE may be more aggressive in people of African descent with higher mortality rates, making rapid and correct diagnosis even more important in the African context. Methods: In this narrative review, we provide a thorough appraisal of the current literature on the role of FDG PET-CT in NPSLE. Large, well-known databases were searched using appropriate search terms. Manual searches of references of retrieved literature were also included. Findings: A total of 73 article abstracts were assessed, yielding 26 papers that were directly relevant to the topic of FDG PET-CT in NPSLE. Results suggest that FDG PET-CT is a sensitive imaging test for NPSLE diagnosis and may play a role in assessing treatment response. It is complementary to routine anatomical imaging, particularly in diffuse manifestations of the disease. Newer quantitative analyses are commonly used for interpretation and can detect even subtle abnormalities, missed on visual inspection. Findings of group-wise analyses of FDG PET-CT scans in NPSLE patients are important in furthering our understanding of the complicated pathophysiological mechanisms involved. Limitations of FDG PET-CT include its lack of specificity, high cost and poor access. Conclusion: FDG PET-CT is a sensitive test for NPSLE diagnosis but is hampered by lack of specificity. It is a valuable tool for clinicians managing SLE patients, particularly when anatomical imaging is negative. Its exact application will depend on the local context and clinical scenario

    Appropriate indications for positron emission tomography/computed tomography : College of Nuclear Physicians of the Colleges of Medicine of South Africa

    Get PDF
    CITATION: Sathekge, M., et al. 2016. Appropriate indications for positron emission tomography/computed tomography : College of Nuclear Physicians of the Colleges of Medicine of South Africa. South African Medical Journal, 105(11):894-896, doi:10.7196/SAMJ.2015.v105i11.10180.The original publication is available at http://www.samj.org.zaIndividualised patient treatment approaches demand precise determination of initial disease extent combined with early, accurate assessment of response to treatment, which is made possible by positron emission tomography/computed tomography (PET/CT). PET is a non-invasive tool that provides tomographic images and quantitative parameters of perfusion, cell viability, and proliferation and/or metabolic activity of tissues. Fusion of the functional information with the morphological detail provided by CT as PET/CT can provide clinicians with a sensitive and accurate one-step whole-body diagnostic and prognostic tool, which directs and changes patient management. Three large-scale national studies published by the National Oncologic PET Registry in the USA have shown that imaging with PET changes the intended patient management strategy in 36.5% to 49% of cases, with consistent results across all cancer types. The proven clinical effectiveness and growing importance of PET/CT have prompted the College of Nuclear Physicians of South Africa, in collaboration with university hospitals, to develop a list of recommendations on the appropriate use of fluorine-18-fluorodeoxyglucose (18F-FDG) and non-18F-FDG PET/CT in oncology, cardiology, neurology and infection/inflammation. It is expected that other clinical situations will be added to these recommendations, provided that they are based upon solid clinical evidence. These recommendations are intended to offer advice regarding contemporary applications of PET/CT, as well as indicating novel developments and potential future indications. The CNP believes that these recommendations will serve an important and relevant role in advising referring physicians on the appropriate use of 18F-FDG and non-18F-FDG PET/CT. More promising clinical applications will be possible in the future, as newer PET tracers become more readily available.http://www.samj.org.za/index.php/samj/article/view/10180Publisher's versio

    Resting-state fMRI and social cognition: An opportunity to connect

    No full text
    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain

    Understanding the biology, morbidity and social contexts of adolescent tuberculosis: a prospective observational cohort study protocol (Teen TB)

    Get PDF
    INTRODUCTION: A considerable burden of the tuberculosis (TB) epidemic is found in adolescents. The reasons for increased susceptibility to TB infection and higher incidence of TB disease in adolescence, compared with the 5-10 years old age group, are incompletely understood. Despite the pressing clinical and public health need to better understand and address adolescent TB, research in this field remains limited. METHODS AND ANALYSIS: Teen TB is an ongoing prospective observational cohort study that aims to better understand the biology, morbidity and social context of adolescent TB. The study plans to recruit 50 adolescents (10-19 years old) with newly diagnosed microbiologically confirmed pulmonary TB disease and 50 TB-exposed controls without evidence of TB disease in Cape Town, South Africa, which is highly endemic for TB. At baseline, cases and controls will undergo a detailed clinical evaluation, chest imaging, respiratory function assessments and blood collection for viral coinfections, inflammatory cytokines and pubertal hormone testing. At 2 weeks, 2 months and 12 months, TB disease cases will undergo further chest imaging and additional lung function testing to explore the patterns of respiratory abnormalities. At week 2, cases will complete a multicomponent quantitative questionnaire about psychological and social impacts on their experiences and longitudinal, in-depth qualitative data will be collected from a nested subsample of 20 cases and their families. ETHICS AND DISSEMINATION: The study protocol has received ethical approval from the Stellenbosch University Health Research Ethics Committee (N19/10/148). The study findings will be disseminated through peer-reviewed publications, academic conferences and formal presentations to health professionals. Results will also be made available to participants and caregivers

    Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response

    Get PDF
    Abstract Background There is a growing interest in the use of F-18 FDG PET-CT to monitor tuberculosis (TB) treatment response. Tuberculosis lung lesions are often complex and diffuse, with dynamic changes during treatment and persisting metabolic activity after apparent clinical cure. This poses a challenge in quantifying scan-based markers of burden of disease and disease activity. We used semi-automated, whole lung quantification of lung lesions to analyse serial FDG PET-CT scans from the Catalysis TB Treatment Response Cohort to identify characteristics that best correlated with clinical and microbiological outcomes. Results Quantified scan metrics were already associated with clinical outcomes at diagnosis and 1 month after treatment, with further improved accuracy to differentiate clinical outcomes after standard treatment duration (month 6). A high cavity volume showed the strongest association with a risk of treatment failure (AUC 0.81 to predict failure at diagnosis), while a suboptimal reduction of the total glycolytic activity in lung lesions during treatment had the strongest association with recurrent disease (AUC 0.8 to predict pooled unfavourable outcomes). During the first year after TB treatment lesion burden reduced; but for many patients, there were continued dynamic changes of individual lesions. Conclusions Quantification of FDG PET-CT images better characterised TB treatment outcomes than qualitative scan patterns and robustly measured the burden of disease. In future, validated metrics may be used to stratify patients and help evaluate the effectiveness of TB treatment modalities
    corecore