336 research outputs found

    Microwave photoresponse in the 2D electron system caused by intra-Landau level transitions

    Full text link
    The influence of microwave radiation on the DC-magnetoresistance of 2D-electrons is studied in the regime beyond the recently discovered zero resistance states when the cyclotron frequency exceeds the radiation frequency. Radiation below 30 GHz causes a strong suppression of the resistance over a wide magnetic field range, whereas higher frequencies produce a non-monotonic behavior in the damping of the Shubnikov-de Haas oscillations. These observations are explained by the creation of a non-equilibrium electron distribution function by microwave induced intra-Landau level transitions.Comment: 4 pages, 5 figure

    Spin-orbit-induced correlations of the local density of states in two-dimensional electron gas

    Full text link
    We study the local density of states (LDOS) of two-dimensional electrons in the presence of spin-orbit (SO) coupling. Although SO coupling has no effect on the average density of states, it manifests itself in the correlations of the LDOS. Namely, the correlation function acquires two satellites centered at energy difference equal to the SO splitting, 2ωSO2\omega_{SO}, of the electron Fermi surface. For a smooth disorder the satellites are well separated from the main peak. Weak Zeeman splitting ωZωSO\omega_{Z} \ll \omega_{SO} in a parallel magnetic field causes an anomaly in the shape of the satellites. We consider the effect of SO-induced satellites in the LDOS correlations on the shape of the correlation function of resonant-tunneling conductances at different source-drain biases, which can be measured experimentally. This shape is strongly sensitive to the relation between ωSO\omega_{SO} and ωZ\omega_{Z}.Comment: 10 pages, 4 figure

    Microwave induced magnetoresistance oscillations at the subharmonics of the cyclotron resonance

    Full text link
    The magnetoresistance oscillations, which occur in a two-dimensional electron system exposed to strong microwave radiation when the microwave frequency ω\omega coincides with the n-th subharmonic of the cyclotron frequency ωc\omega_c have been investigated for n = 2, 3 and 4. It is shown that these subharmonic features can be explained within a non-equilibrium energy distribution function picture without invoking multi-photon absorption processes. The existence of a frequency threshold above which such oscillations disappear lends further support to this explanation.Comment: 5 pages, 5 figure

    Nonlinear theory of fractional microwave-induced magnetoresistance oscillations in a dc-driven two-dimensional electron system

    Full text link
    Microwave-induced nonlinear magnetoresistance in a dc-driven two-dimensional electron system is examined using a multi-photon-assisted transport scheme direct controlled by the current. It is shown that near the 2nd subharmonic of the cyclotron resonance, the frequency of the resistivity oscillation with the magnetic-field-normalized current-density is double that at the cyclotron resonance and its harmonics, in excellent agreement with recent experimental findings by Hatke {\it et al.} [Phys. Rev. Lett. {\bf 101}, 246811 (2008)]. The current-induced alternative emergence of resonant two-photon and single-photon processes is responsible for this frequency doubling. Near the third subharmonic of the cyclotron resonance, the current-induced consecutive appearance of resonant 0-/3-photon, two-photon, and single-photon processes may lead to the frequency tripling of the resistivity oscillation.Comment: 6 pages, 2 figures, published versio

    Calcium Orthophosphate Bioceramics

    Get PDF
    The present review is intended to point the readers’ attention to the important subject of calcium orthophosphate bioceramics. Calcium orthophosphates by one-selves appear to be of a special significance for the human beings because they represent the inorganic part of calcified tissues of mammals. Therefore, many types of calcium orthophosphate-based bioceramics possess remarkable biocompatibility and bioactivity. Materials scientists extensively use this property in attempts to construct artificial bone grafts those are either entirely made of or only surface-coated by calcium orthophosphate bioceramics. Namely, self-setting calcium orthophosphate cements are very helpful in filling voids in damaged bones, while metallic implants covered by a surface layer of calcium orthophosphate bioceramics are widely used for hip joint endoprostheses and tooth substitutes. Porous bioceramicscaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In this paper, an overview on the current knowledge on calcium orthophosphate bioceramics has been provided

    Direct measurements of the fractional quantum Hall effect gaps

    Full text link
    We measure the chemical potential jump across the fractional gap in the low-temperature limit in the two-dimensional electron system of GaAs/AlGaAs single heterojunctions. In the fully spin-polarized regime, the gap for filling factor nu=1/3 increases LINEARLY with magnetic field and is coincident with that for nu=2/3, reflecting the electron-hole symmetry in the spin-split Landau level. In low magnetic fields, at the ground-state spin transition for nu=2/3, a correlated behavior of the nu=1/3 and nu=2/3 gaps is observed

    Fractional quantum Hall effect without energy gap

    Full text link
    In the fractional quantum Hall effect regime we measure diagonal (ρxx\rho_{xx}) and Hall (ρxy\rho_{xy}) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Alx_{x}Ga1x_{1-x}As heterojunctions, together with capacitance between 2DES and the gate. We observe 1/3- and 2/3-fractional quantum Hall effect at rather low magnetic fields where corresponding fractional minima in the thermodynamical density of states have already disappeared manifesting complete suppression of the quasiparticle energy gaps.Comment: 4 pages, 4 figure

    Photon-assisted scattering and magnetoconductivity oscillations in a strongly correlated 2D electron system formed on the surface of liquid helium

    Get PDF
    The influence of strong internal forces on photon-assisted scattering and on the displacement mechanism of magnetoconductivity oscillations in a two-dimensional (2D) electron gas is theoretically studied. The theory is applied to the highly correlated system of surface electrons on liquid helium under conditions that the microwave frequency is substantially different from inter-subband resonance frequencies. A strong dependence of the amplitude of magnetoconductivity oscillations on the electron density is established. The possibility of experimental observation of such oscillations caused by photon-assisted scattering is discussed.Comment: 7 pages, 1 figur
    corecore