36 research outputs found

    A CCD based curvature wavefront sensor for Adaptive Optics in Astronomy

    Get PDF
    Adaptive Optik (AO) ist eine Technik, um Störungen in der Abbildung von Objekten im Teleskop auszugleichen. Diese Störungen werden von Fluktuationen des Brechungsindexes in der Erdatmosphäre hervorgerufen. Zum Messen dieser Störungen gibt es eine Reihe verschiedener Wellenfrontsensoren. Einer davon ist der 'Curvature'- Wellenfrontsensor, was soviel wie 'Krümmungs'- Wellenfrontsensor bedeutet. An der Europäischen Südsternwarte (ESO) in Garching werden für das Very Large Telescope (VLT) und das VLT Interferometer (VLTI) eine Reihe von adaptiven Optiksystemen entwickelt, die den Curvature - Wellenfrontsensor verwenden. Bisher wurden in Curvature AO-Systemen Avalanche Photodioden (APDs) als Detektoren verwendet, da sehr kurze Belichtungszeiten (200 Mikrosekunden) und ein sehr niedriges Ausleserauschen des Detektors nötig sind. Aufgrund von Fortschritten in der Herstellungstechnologie von Charge Coupled Devices (CCDs) entwickelten wir ein spezielles CCD und untersuchten dessen Leistungsfähigkeit für ein 60 Element Curvature AO System, das mit sehr schwachen Lichtsignalen arbeitet. Hier wurde erstmals ein CCD als Wellenfrontsensor verwendet. Diese Dissertation zeigt, daß ein CCD annäherend die gleiche Leistungsfähigkeit wie APDs bietet, jedoch zu einem Bruchteil der Kosten und geringerer Komplexität. Weiter hat das CCD eine höhere Quantenausbeute und einen größeren dynamischen Bereich als APDs. Ein Ausleserauschen von weniger als 1,5 Elektronen bei 4000 Bildern pro Sekunde wurde erreicht. Für AO Systeme, die Wellenfrontkorrekturen mit vielen Elementen durchführen, können dünne, von hinten beleuchtete CCDs, APDs als bessere Detektoren ersetzen. Diese Dissertation präsentiert das Konzept, das Design und die Bestimmung der Leistungsfähigkeit dieses CCDs. Erste (von vorne beleuchtete) CCDs wurden erfolgreich getestet und die Leistungsfähigkeit in einem Laborexperiment nachgewiesen

    ERIS: revitalising an adaptive optics instrument for the VLT

    Get PDF
    ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation for Astronomy VII

    Very accurate cryogenic mechanisms for CRIRES+

    Get PDF
    After 5 years of operation on the VLT, a large upgrade of CRIRES (the ESO Cryogenic InfraRed Echelle Spectrograph) was decided mainly in order to increase the efficiency. Using a cross dispersion design allows better wavelength coverage per exposure. This means a complete re-design of the cryogenic pre-optic which were including a predispersion stage with a large prism as dispersive element. The new design requires a move of the entrance slit and associated decker toward the first intermediate focal plane right behind the window. Implement 2 functions with high positioning accuracy in a pre-defined and limited space was a real challenge. The design and the test results recorded in the ESO Cryogenic Test Facility are reported in this paper. The second critical function is the grating wheel which positions the 6 cross disperser gratings into the beam. The paper describes the design of the mechanism which includes a detente system in order to guaranty the 5 arc sec positioning reproducibility requested. The design includes also feedback system, based on switches, in order to ensure that the right grating is in position before starting a long exposure. The paper reports on the tests carried out at cryogenic temperature at the sub-system level. It also includes early performances recorded in the instrument along the first phases of the system test

    The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    Get PDF
    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory

    A unique infrared spectropolarimetric unit for CRIRES+

    Get PDF
    High-resolution infrared spectropolarimetry has many science applications in astrophysics. One of them is measuring weak magnetic fields using the Zeeman effect. Infrared domain is particularly advantageous as Zeeman splitting of spectral lines is proportional to the square of the wavelength while the intrinsic width of the line cores increases only linearly. Important science cases include detection and monitoring of global magnetic fields on solar-type stars, study of the magnetic field evolution from stellar formation to the final stages of the stellar life with massive stellar winds, and the dynamo mechanism operation across the boundary between fully- and partially-convective stars. CRIRES+ (the CRIRES upgrade project) includes a novel spectropolarimetric unit (SPU) based on polar- ization gratings. The novel design allows to perform beam-splitting very early in the optical path, directly after the tertiary mirror of the telescope (the ESO Very Large Telescope, VLT), minimizing instrumental polariza- tion. The new SPU performs polarization beam-splitting in the near-infrared while keeping the telescope beam mostly unchanged in the optical domain, making it compatible with the adaptive optics system of the CRIRES+ instrument. The SPU consists of four beam-splitters optimized for measuring circular and linear polarization of spectral lines in YJ and HK bands. The SPU can perform beam switching allowing to correct for throughput in each beam and for variations in detector pixel sensitivity. Other new features of CRIRES+, such as substantially increased wavelength coverage, stability and advanced data reduction pipeline will further enhance the sensitivity of the polarimetric mode. The combination of the SPU, CRIRES+ and the VLT is a unique facility for making major progress in understanding stellar activity. In this article we present the design of the SPU, laboratory measurements of individual components and of the whole unit as well as the performance prediction for the operation at the VLT

    Characterizing the cross dispersion reflection gratings of CRIRES+

    Get PDF
    The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed Echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings underconditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range). The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 μm to 6 μm

    Full system test and early preliminary acceptance Europe results for CRIRES+

    Get PDF
    CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R=100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching

    EBF2 regulates osteoblast-dependent differentiation of osteoclasts.

    Get PDF
    Communication between bone-depositing osteoblasts and bone-resorbing osteoclasts is required for bone development and homeostasis. Here, we identify EBF2, a member of the early B cell factor (EBF) family of transcription factors that is expressed in osteoblast progenitors, as a regulator of osteoclast differentiation. We find that mice homozygous for a targeted inactivation of Ebf2 show reduced bone mass and an increase in the number of osteoclasts. These defects are accompanied by a marked downregulation of the osteoprotegerin (Opg) gene, encoding a RANK decoy receptor. EBF2 binds to sequences in the Opg promoter and transactivates the Opg promoter in synergy with the Wnt-responsive LEF1/TCF:β-catenin pathway. Taken together, these data identify EBF2 as a regulator of RANK-RANKL signaling and osteoblast-dependent differentiation of osteoclasts
    corecore