40 research outputs found

    Nitrogen Level Changes the Interactions between a Native (Scirpus triqueter) and an Exotic Species (Spartina anglica) in Coastal China

    Get PDF
    The exotic species Spartina anglica, introduced from Europe in 1963, has been experiencing a decline in the past decade in coastal China, but the reasons for the decline are still not clear. It is hypothesized that competition with the native species Scirpus triqueter may have played an important role in the decline due to niche overlap in the field. We measured biomass, leaf number and area, asexual reproduction and relative neighborhood effect (RNE) of the two species in both monoculture and mixture under three nitrogen levels (control, low and high). S. anglica showed significantly lower biomass accumulation, leaf number and asexual reproduction in mixture than in monoculture. The inter- and intra-specific RNE of S. anglica were all positive, and the inter-specific RNE was significantly higher than the intra-specific RNE in the control. For S. triqueter, inter- and intra-specific RNE were negative at the high nitrogen level but positive in the control and at the low nitrogen level. This indicates that S. triqueter exerted an asymmetric competitive advantage over S. anglica in the control and low nitrogen conditions; however, S. anglica facilitated growth of S. triqueter in high nitrogen conditions. Nitrogen level changed the interactions between the two species because S. triqueter better tolerated low nitrogen. Since S. anglica is increasingly confined to upper, more nitrogen-limited marsh areas in coastal China, increased competition from S. triqueter may help explain its decline

    Current and Future Patterns of Global Marine Mammal Biodiversity

    Get PDF
    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available

    Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol.

    Get PDF
    Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells

    HP1α guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation

    No full text
    A critical step of neuronal terminal differentiation is the permanent withdrawal from the cell cycle that requires the silencing of genes that drive mitosis. Here, we describe that the α isoform of the heterochromatin protein 1 (HP1) protein family exerts such silencing on several E2F-targeted genes. Among the different isoforms, HP1α levels progressively increase throughout differentiation and take over HP1γ binding on E2F sites in mature neurons. When overexpressed, only HP1α is able to ensure a timed repression of E2F genes. Specific inhibition of HP1α expression drives neuronal progenitors either towards death or cell cycle progression, yet preventing the expression of the neuronal marker microtubule-associated protein 2. Furthermore, we provide evidence that this mechanism occurs in cerebellar granule neurons in vivo, during the postnatal development of the cerebellum. Finally, our results suggest that E2F-targeted genes are packaged into higher-order chromatin structures in mature neurons relative to neuroblasts, likely reflecting a transition from a ‘repressed' versus ‘silenced' status of these genes. Together, these data present new epigenetic regulations orchestrated by HP1 isoforms, critical for permanent cell cycle exit during neuronal differentiation

    Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients

    No full text
    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches
    corecore