9 research outputs found

    Defining motility in the Staphylococci

    Get PDF
    The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions

    A Staphylococcus xylosus isolate with a new mecC allotype

    Get PDF
    Recently, a novel variant of mecA known as mecC (mecA(LGA251)) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec

    Molecular identification of Staphylococcus xylosus MAK2, a new α-l-rhamnosidase producer

    Full text link
    A bacterial strain, MAK-2, was isolated as a producer of α-l-rhamnosidase from a soil sample of Dehradoon, India. The strain was identified based on morphology, physiological tests and 16S rDNA analysis. The phylogenetic analysis based on the 16S rDNA sequence, identified the isolate as Staphylococcus xylosus, a nonpathogenic member of CNS (coagulase-negative staphylococci) family. The strain was capable of producing α-l-rhamnosidase by hydrolysing flavonoids thus confirming potential application in the citrus-processing industry
    corecore