17 research outputs found

    Growth response and heavy metals tolerance of Axonopus affinis, inoculated with plant growthpromoting rhizobacteria

    Get PDF
    Different microorganisms have been used for bioremediation based on their resistance and ability to sequester heavy metals. The use of plant growth-promoting rhizobacteria (PGPR) for bioremediation of these contaminants has been successful. A PGPR isolated from hydrocarbons-contaminated soil identified as Bacillus sp., by microbiological and molecular tools and characterized as heavy metal tolerant by minimal inhibitory concentration (MIC) assay was inoculated into Axonopus affinis plants. Both of them were exposed to cadmium, nickel, and zinc and the effect of their relationship was analyzed by multivariate analysis. The results did not show a significant growth promotion and development of this Poaceae with rhizobacteria alone, but the presence of heavy metals plus the PGPR assured the survival of plants. This suggests that the plant’s response is related with the metal concentration and the exposure time to the contaminants, as well as with its intrinsic tolerance. The Bacillus sp strain allowed the growth maintenance of A. affinis and enhanced its tolerance to the assayed heavy metals, suggesting a synergistic effect between this species and the rhizobacterium in response to contaminating agents.Keywords: Bioremediation, heavy metals, microorganisms, plant

    Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids

    Get PDF
    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≀23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 ÎŒg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≀65% decrease of viability), whereas crude methanol and acetone extracts of Chattonella, Fibrocapsa, Heterosigma, Karlodinium and Prymnesium decreased cell viability down to 0%. These and our previous findings involving the role of fatty acids confirm that superoxide radicals are only partially involved in ichthyotoxicity and point to a highly variable contribution by other compounds such as lipid peroxidation products (e.g. aldehydes)
    corecore