7 research outputs found

    Complete maternal isodisomy of chromosome 3 in a child with recessive dystrophic epidermolysis bullosa but no other phenotype abnormalities.

    Get PDF
    The mechanobullous disease Hallopeau–Siemens recessive dystrophic epidermolysis bullosa (HS-RDEB) results from mutations in the type VII collagen gene (COL7A1) on chromosome 3p21.31. Typically, there are frameshift, splice site, or nonsense mutations on both alleles. In this report, we describe a patient with HS-RDEB, who was homozygous for a new frameshift mutation, 345insG, in exon 3 of COL7A1. However, sequencing of parental DNA showed that although the patient's mother was a heterozygous carrier of this mutation, the father's DNA contained only wild-type sequence. Microsatellite marker analysis confirmed paternity and genotyping of 28 microsatellites spanning chromosome 3 revealed that the affected child was homozygous for every marker tested with all alleles originating from a single maternal chromosome 3. Thus, the HS-RDEB phenotype in this patient is due to complete maternal isodisomy of chromosome 3 and reduction to homozygosity of the mutant COL7A1 gene locus. To our knowledge, there are no published reports of uniparental disomy (UPD) in HS-RDEB; moreover, this case represents only the third example of UPD of chromosome 3 to be reported. The severity of the HS-RDEB in this case was similar to other affected individuals and no additional phenotypic abnormalities were observed, suggesting an absence of maternally imprinted genes on chromosome 3

    LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum

    Get PDF
    Nature Publishing Group, Journal of Investigative Dermatology, 124, 2, 2005, 360-366 authorLympho-epithelial Kazal-type-related inhibitor (LEKTI) is a putative serine protease inhibitor encoded by serine protease inhibitor Kazal-type 5 (SPINK5). It is strongly expressed in differentiated keratinocytes in normal skin but expression is markedly reduced or absent in Netherton syndrome (NS), a severe ichthyosis caused by SPINK5 mutations. At present, however, both the precise intracellular localization and biological roles of LEKTI are not known. To understand the functional role of LEKTI, we examined the localization of LEKTI together with kallikrein (KLK)7 and KLK5, possible targets of LEKTI, in the human epidermis, by confocal laser scanning microscopy and immunoelectron microscopy. In normal skin, LEKTI, KLK7, and KLK5 were all found in the lamellar granule (LG) system, but were separately localized. LEKTI was expressed earlier than KLK7 and KLK5. In NS skin, LEKTI was absent and an abnormal split in the superficial stratum granulosum was seen in three of four cases. Collectively, these results suggest that in normal skin the LG system transports and secretes LEKTI earlier than KLK7 and KLK5 preventing premature loss of stratum corneum integrity/cohesion. Our data provide new insights into the biological functions of LG and the pathogenesis of NS
    corecore